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Abstract-Automatic modulation type identification is needed in many applications. Most of modulation type 
identification methods can only recognize a few kinds of signals. They usually require high levels of signal to 
noise ratio (SNR) to achieve an acceptable performance. This paper proposes a new intelligent digital 
modulation type identifier. This identifier uses a multilayer perceptron neural network with resilient back 
propagation learning algorithm as the classifier and higher order moments and cumulants (up to eighth) as the 
features. A validation method is used during training cycle to improve the generalization of the classifier. 
Genetic algorithm is utilized to finding the numbers of hidden layer nodes and selection of input features. The 
experiment results show that IDMTI is able to discriminate the different kinds of digital modulations with high 
accuracy even at very low SNR values.  
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1   Introduction 
Automatic modulation type identification is an in-
termediate process between signal detection and 
demodulation. It has many communication intelli-
gence applications such as: spectrum surveillance, 
interference identification, intelligent modems, 
software radios, etc. Whilst most methods proposed 
initially were designed for analogue modulations, 
the recent contributions in the subject focus more on 
digital communication due to increasing usage of 
digital modulations. 

Generally, automatic modulation type identifica-
tion methods fall into two main categories, decision 
theoretic (DT) and pattern recognition (PR). DT ap-
proaches use probabilistic and hypothesis testing 
arguments to formulate the recognition problem and 
to obtain the classification rule [1-3]. The major 
drawbacks of these approaches are their very high 
computational complexity and difficulty within the 
implementation of decision rule. PR approaches, 
however, are simple to implement. They can be fur-
ther divided into two subsystems: the feature extrac-
tion subsystem and the classifier subsystem [4-11]. 
The selection of both subsystems is most serious 
problem. Multilayer perceptron (MLP) neural net-
work is one of the classifier that is used in modula-
tion identification systems. It is showed that this 
type of classifier outperforms other classifiers such 
as K-nearest neighborhood [7-11].  

 Most of modulation identification systems can 
only recognize only a few kinds of signals. The 
work presented here, proposes a new intelligent 
digital modulation type identifier (IDMTI) which is 

able to recognize different types of digital modula-
tions from lower order to higher order even in low 
SNR values. Figure 1, shows the general scheme of 
IDMTI. Preprocessing module performs: rejection 
of noise outside of signal bandwidth, carrier fre-
quency estimation (or to be known), recovery of 
complex envelope, etc. This stage is similar in most 
of methods and we don’t explain more, here. The 
considered digital modulations set is presented in 
section 2. Feature extraction module is described in 
section 3. The classifier that is used in this paper is 
introduced in section 4. Section 5, presents an opti-
mization problem that will be done by GA. Section 
6, show some simulation results. Finally, section 7 
concludes the paper. 
 

 Input signal 

Preprocessing 

Feature Extraction 

Classifier 

Modulation type  
Figure1: General scheme of IDMTI 

 
 
2     Considered digital modulations set  
In digital communications, according to the changes 
in the message frequency, message amplitude, mes-
sage phase, or changes in amplitude and phase, we 
have four main digital modulation techniques, fre-
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quency shift keying (FSK), amplitude shift keying 
(ASK), phase shift keying (PSK) and quadrature 
amplitude modulation (QAM), respectively. Most of 
them are applied in M-ary form because of their 
bandwidth efficiency [12]. We have: 
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In the above equations )(tg is pulse shaping func-
tion, cf is frequency carrier, M is number of states, 

sT is symbol period and sE  is energy per sym-
bol. kA , kC  and kf∆ states the symbols. f∆ is fre-
quency deviation. Among them, QAM types are a 
new type and as have a slightly different form. It is 
designed to transmit two separate signals independ-
ently with the same carrier frequency. In this paper 
the considered digital modulations set is {PSK2, 
PSK4, PSK8, ASK4, ASK8, QAM16, QAM32, 
QAM128, Star-QAM8, V29 (9600)}.  
 
3     Features 
In modulation identification problem, finding the 
proper features is very important. For example 
QAM modulation schemes contain information in 
both amplitude and phase (that are regarded as com-
plex signals), thus finding the proper feature that 
could be able to identify them (especially in case of 
higher order and/or non-square) is difficult. Based 
on our researches, the higher order moments and 
higher order cumulants up to eighth achieve the 
most highly performances to discriminating of digi-
tal modulations such as considered set in this paper. 
These features have many advantages e.g. they pro-
vide a good way to describe the shape of the prob-
ability density function. Following briefly describe 
these features. 

Probability distribution moments are a generali-
zation of concept of the expected value [13]. The 

auto-moment of the random variable may be defined 
as follows: 

])([ qqp
pq ssEM ∗−=                                                (5)                   

where p called moment order. Assume a zero-mean 
discrete based-band signal sequence of the form  

kkk jbas +=  . Using the (5), the expressions for 
different order may be easily derived.                                          

The symbolism for thp order of cumulant is de-
fined as: 
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There are relations between moments and cumu-
lants. The thn order cumulant is a function of the 
moments of orders up to including n. Moments is 
expressed in terms of cumulants as: 
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where the summation index is over all partitions 
),...,( 1 qvvv =  for the set of indexes ),...,2,1( n , and q  

is the number of elements in a given partition. Cu-
mulants may be also be derived in terms of mo-
ments. The  thn  order cumulant of a discrete signal 
s(n) is given by: 
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We have computed the features of considered digital 
modulation set. For simplifying the indication, we 
substitute the modulations PSK2, PSK4, PSK8, 
ASK4, ASK8, QAM16, QAM32, QAM128, Star-
QAM8, V29 (9600), with P1, P2, P3, P4, P5, P6, P7, 
P8, P9, P10, respectively. Table1 shows some of these 
features (values for signal constellations under the 
constraint of unit variance and noise free). 
 

Table1: Some of features of considered modulations 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M20 1 0 0 1 1 0 0 0 0 0 
M41 1 0 0 1.64 1.77 0 0 0 0 0 
M61 1 -1 0 2.92 3.62 -1.32 -.38 .378 2.92 1.06
M82 1 -1 0 5.25 7.92 -2.48 -.74 -.78 5.25 2.19
C40 -2 -1 0 -1.36 -1.2 -0.68 -.19 -.18 1.64 .516
C63 16 4 4 8.32 7.19 2.08 2.111.95 0.16 1.49
C80 -244-34 1 -30.19.27-13.99 -1.9 -1.8 -88.9 -5.6

 
 
4     Classifier 
MLP neural network is a popular family of feed for-
ward ANNs that has simple and efficient applica-
tions [14]. In this paper, a MLP is used as the classi-
fier.  MLPs consist of an input layer of source 
nodes, one or more hidden layers of computation 
nodes (neurons) and an output layer. The number of 
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nodes in the input and the output layers depend on 
the number of input and output variables, respec-
tively. The number of hidden layers and the number 
of nodes in each hidden layer affect the generaliza-
tion capability of the network. For smaller number 
of hidden layers and neurons, the performance may 
not be adequate, whereas with too many hidden 
nodes may have the risk of overfitting the training 
data and poor generalization on the new data. Figure 
2 shows a typical MLP architecture consists of in-
put, one hidden, output layers, respectively.  

Inputs are propagated through the network layer 
by layer and MLP gives a non-linear mapping of the 
inputs at the output layers. The input vector 

( )TNxxxx ,...,, 21= is transformed to an intermediate 
vector of hidden variables u, using the activation 
function 1ϕ . The output ju of the jth node in the hid-
den layer is obtained as follows: 
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where 1
jb  and 1

, jiw  represent the bias and the weight 
of the connection between the jth node(in the hidden 
layer) and the ith (input) node, respectively. The su-
perscript 1 represents the connection (first) between 
the input and the hidden layers. The output vector 

( )TQyyyy ,...,, 21= is obtained from the vector of in-
termediate variables u through a similar transforma-
tion using activation function 2ϕ  at the output layer. 
For example, the output of the neuron k can be ex-
pressed as follows: 
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where the superscript 2 represents the connection 
(second) between the neurons of the hidden and the 
output layers. There are several forms of activation 
functions 1ϕ and 2ϕ , such as logistic function, hy-
perbolic tangent and piece-wise linear function.  
 

X1 
Input layer 
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XN 
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u1 

u2 

uQ 

Hidden layer Output layer 

 
Figure3: Typical structure of MLP (one hidden layer) 
 

The recognition basically consists of two phases 
training and testing. In training stage, weights are 
calculated according to the chosen learning algo-
rithm. The training of MLP is very important. One 

of popular learning algorithm is standard back-
propagation (BP) algorithm. However, in recent 
years, new learning algorithms have been proposed 
for network training. However, some algorithms 
require much computing power to achieve good 
training. In this paper, the resilient back-propagation 
algorithm (RPROP) is used [15].Unlike BPs, 
RPROP only considered the sign of derivatives as 
the indication for the direction of the weight update. 
In doing so, the size of the partial derivative does 
not influence the weight step. The following equa-
tion shows the adaptation of the update values of 

ij∆ (weight changes) for the RPROP algorithm. For 
initialization, all ij∆  are set to small positive values: 
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where 10 =η , +− ηη ppp 10  and +− ,0,η  are known as 
the update factors. Whenever the derivative of the 
corresponding weight changes its sign, it implies 
that the previous update value is too large and it has 
skipped a minimum. Therefore, the update value is 
then reduced )( −η  as shown above. However, if the 
derivative retains its sign, the update value is 

)( +η increased. This will help to accelerate conver-
gence in shallow areas. To avoid over-acceleration, 
in the epoch following the application of +η , the 
new update value is neither increased nor decreased 

)( 0η  from the previous one. Note that values of ij∆  
remain non-negative in every epoch. This update 
value adaptation process is then followed by the ac-
tual weight update process, which is governed by 
the following equations: 
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5    Genetic algorithm    
The execution speed of a modulation type identifier 
is most important characteristic. One of the parame-
ters that affects on the execution speed value is the 
number of features. As it is realized from the section 
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3, our modulation type identifier faces to a lot of 
features. Although whole of the features are useful 
but some of them are share the same information 
content. On the other hand, this number of features 
causes complexity computations. Thus it is needed 
to perform the feature selection. Another parameter 
that affects on the execution speed value of identi-
fier is complexity of the classifier (MLP). The com-
plexity of MLP is, usually, related to the number of 
hidden layer and nodes. The MLP that is considered 
in this paper has one hidden layer. Thus it should be 
only to reduce the number of hidden layer nodes. 
Both of the features selection and reduction nodes of 
hidden should be done in a manner without com-
promising the performance of the recognizer. This is 
an optimization problem. Among the methods that 
exist, it is considered the GAs method because of its 
efficiency and simplicity [16]. 

GA has been considered with increasing interest 
in a wide variety of applications. The use of genetic 
algorithm needs consideration of six basic issues: 
chromosome (genome) representation, selection 
function, genetic operators like mutation and cross-
over for reproduction function, creation of initial 
population, termination criteria, and the evaluation 
function. Though the traditional genome representa-
tion has been in binary form, the interest in real-
coded or floating-point genomes for multidimen-
sional parameter optimization problems is on the 
rise because of the closeness of the second type of 
representation to the problem space, better average 
performance and more efficient numerical imple-
mentation.  

In this paper, real-coded genomes were used. 
The genome X  contains 1+N  real numbers 

{ }T
NN xxxxX 121 ... += .The first N  numbers in the 

genome are the selected features from the total fea-
tures ( R ) and constrained to be in the range 

Rxi ≤≤1 . The last number ( 1+Nx ) shows the num-
ber of hidden neurons and has to be within the 
range max1min SxS N ≤≤ + . The parameters minS  and 

maxS  represent respectively the lower and the upper 
bounds on the number of nods in the hidden layer. A 
probabilistic selection, namely, normalized geomet-
ric ranking method [17] was used based on the indi-
vidual’s fitness such that the better individuals have 
higher chances of being selected. A non-uniform 
mutation function [18] using a random number for 
mutation based on current generation and the maxi-
mum generation number, among other parameters 
was adopted. Heuristic crossover [18] was used. 
This operator produces a linear extrapolation of two 
individuals using the fitness information.  

To start the solution process, the random generation 
of initial solutions for the population is used. The 
maximum number of generations was adopted as the 
termination criterion for the solution process. The 
fitness function used here returns the number of cor-
rect classification of the test data.  
 
 
6     Simulation study 
All signal are digitally simulated according to (2), 
(3) and (4) in MATLAB simulation editor. Gaussian 
noise was added according to SNRs, –2, 0, 4, 8, 12, 
and 20 dB. Each modulation type has 3000 realiza-
tions of 4096 samples. These are then divided into 
data sets for training, validation and testing. The 
MLP classifier is allowed to run up to 4,000 training 
epochs. However, training is normally stopped by 
the validation process long before this maximum 
epoch is reached.  The activation functions of tan-
sigmoid (tanh), and logistic (log-sigmoid), were 
used in the hidden and the output layers, respec-
tively. In this work, a MSE of 10E-6 is used.  

Firstly we evaluate the performance of system 
without optimization (straight ANN), i.e., full fea-
tures are used and the number of neurons in the hid-
den layer has been determined manually. Based on 
some simulations, the number of 17 neurons seems 
to be adequate for reasonable classification. Table 2 
shows the performance of the identifier for various 
SNR values. Performance is generally good even 
with low SNRs.  

 
Table 2: Overall performance (OP) of straight system 

 
SNR (dB) OP 

-2 85.35 
0 91.29 
4 93.25 
8 98.45 

12 98.91 
20 99.18 

 
Now, we apply the GA. In the GA, a population 

size of ten individuals was used starting with ran-
domly generated genomes. This size of population 
was chosen to ensure relatively high interchange 
among different genomes within the population and 
to reduce the likelihood of convergence within the 
population. The number of output layer node is set 
by the number of modulations. One has to specify 
the number of features (number of input nodes) that 
varies 3 to 28 (total number of features).Therefore, 
experiments were carried out to investigate the pos-
sibility of even smaller data set and the compromise 
in performance that one might observe. The number 
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of hidden nodes varies between 4 and 24. The size 
of the hidden layer is determined by genetic algo-
rithm itself during training. This allows training to 
proceed at a faster rate than an exhaustive training 
process that checks different sizes of first layer. The 
genetic algorithm is allowed to select subsets of 
various sizes to determine the optimum combina-
tion. Table 3 shows the performance of the identifier 
using only seven features selected (FS) by the GA. 
Also, at each SNR, the optimal number of neuron in 
hidden layer (ONHN) is identified. Results indicates 
that that for example at SNR= -2dB, the recognizer 
records a performance degradation of about 1.5% 
only. For other SNRs, the difference is negligible. 
Thus it can be said that the proposed method 
achieves high performance on most SNR values 
with only seven features and nearly 13 neurons that 
have been selected using GA.     
 

Table3: Performance of identifier with applying of GA 
 

SNR No. FS ONHN OP with GA OP without GA
-2 7 14 83.92 85.35 
0 7 13 90.83 91.29 
4 7 12 92.96 93.25 
8 7 12 98.15 98.45 

12 7 12 98.72 98.91 
20 7 12 98.89 99.18 

 
 
 
7   Conclusion 

AMTI is an important issue in communication 
intelligence and electronic support measure systems. 
Here, we propose a new intelligent system (IDMTI) 
that uses high effective features and classier. It is 
able to discriminate the different kinds of digital 
modulations with high accuracy at very low SNR 
values. The proposed method is also fast in terms of 
training time.  
 
Acknowledgements 

The Authors would like to thank ITRC and TCKH.  

 

References: 
[1]   C. Le Martret, and D. Boitea, A general maxi 

mum likelihood classifier for modulation classi-
fication, Proc. ICASSP, Vol. 4, 1998, pp. 2165-
2168. 

[2]   W. Wei, and J. M. Mendel, Maximum-
likelihood classification for digital amplitude-
phase modulations, IEEE Trans. Commun., 
2000,Vol. 48, pp. 189-193. 

[3]   P. Panagotiou, and  A. Polydoros, Likelihood 
ratio tests for modulation classifications, Proc. 
MILCOM, 2000, pp. 670-674. 

[4]   B. G. Mobasseri, Digital modulation classifica-
tion using constellation shape, Signal Process-
ing, Vol. 80, 2000, pp. 251–277. 

[5] A. Swami,  and B. M. Sadler, Hierarchical digi-
tal modulation classification using cumulants,” 
IEEE Trans. Comm., Vol. 48, No. 3, 2000, pp. 
416–429. 

[6] J. Lopatka, and P. Macrej, Automatic modula-
tion classification using statistical moments and 
a fuzzy classifier, Proc. ICSP, 2000, pp.121-
127. 

[7] A. Ebrahimzadeh, S. A. Seyedin, A new method 
for identifying of signal type, Proc. CIS, 2005, 
156-161. 

[8] A. Ebrahimzadeh, and S. A. Seyedin, Automatic 
psk modulation identification using wpa and a 
modified mlp, Proc. CIS, 2005, pp. 250-255. 

[9] C. L. P. Sehier, Automatic modulation recogni-
tion with a hierarchical neural network, Proc. 
MILCOM, 1993, pp. 111–115. 

[10] A.K. Nandi, E.E. Azzouz, Algorithms for 
automatic modulation recognition of communi-
cation signals, IEEE Trans. Commun., Vol. 46, 
No. 4, 1998, pp. 431–436. 

[11] L. Mingquan, X. Xianci, L. Leming, Cyclic 
spectral features based modulation recognition,  
Proc. Comm. Tech., Vol.2, 1998, pp. 792–795. 

[12] J. G. Proakis, Digital Communications, New 
York: McGraw-Hill, 2001. 

[13] P. McCullagh, Tensor Methods in statistics. 
Chapman & Hall, 1987. 

[14] S. Haykin, Neural Networks: A Comprehensive 
Foundation. 2nd Edition, Prentice-Hall, NJ, 
USA, 1999. 

[15] M. Riedmiller, H. Braun, A direct adaptive 
method for faster back-propagation learning: 
the RPROP algorithm, Proc. I CN N, 1993, pp. 
586–591. 

[16] G. E. Goldberg, Genetic Algorithms in Search, 
Optimization and Machine Learning. Addison-
Wesley, NY, USA, 1989. 

[17] Z. Michalewicz, Genetic algorithms+Data 
Structures=Evolution Programs. 3rd Edition, 
Springer, NY, USA,1999. 

[18] C.R. Houk, J. Joines, M. Kay, A genetic algo-
rithm for function optimization: a matlab im-
plementation. North Carolina State University, 
Report no.: NCSU IE TR 95 09, 1995. 

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp139-143)


