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Abstract: Stormwater pipe systems in Australia are designed to convey water from rainfall and surface runoff 
only and do not transport sewage. Any blockage can cause flooding events with the probability of subsequent 
property damage. Proactive maintenance plans that can enhance their serviceability need to be developed based 
on a sound deterioration model. This paper uses a neural network (NN) approach to model deterioration in 
serviceability of concrete stormwater pipes, which make up the bulk of the stormwater network in Australia. 
System condition data was collected using CCTV images. The outcomes of model are the identification of the 
significant factors influencing the serviceability deterioration and the forecasting of the change of serviceability 
condition over time for individual pipes based on the pipe attributes. The proposed method is validated and 
compared with multiple discriminant analysis, a traditionally statistical method. The results show that the NN 
model can be applied to forecasting serviceability deterioration. However, further improvements in data 
collection and condition grading schemes should be carried out to increase the prediction accuracy of the NN 
model.   

Keywords: Deterioration model, neural networks, stormwater pipes, multiple discriminant analysis.  

1. Introduction 
Flooding damage has cost Australia approximately 
$314 million annually [1]. Designed to only convey 
stormwater and surface water, stormwater pipe 
systems in Australia need proactive maintenance 
plans to enhance their serviceability to reduce the 
frequency of flooding events caused by pipe 
blockage and thus the property damage. 
Furthermore, obstruction free stormwater pipes are 
needed so that CCTV inspection for their structural 
condition can be carried out properly.  

This paper focuses on modelling the 
deterioration process of serviceability for concrete 
stormwater pipes. The outcomes of model are the 
identification of the significant factors influencing 
the serviceability deterioration and the forecasting 
of the change of serviceability condition over time 
for individual pipes based on the pipe attributes. 
This study is restricted to concrete pipes because 
more than half of small to medium size stormwater 
pipes and most of large and important pipes in the 
stormwater system are of concrete.  

The serviceability deterioration is 
estimated from three apparent conditions [2].  

Condition 1 indicates pipes in good condition, 
condition 2 indicates pipes in fair condition and 
condition 3 means the pipes need further 
investigation. Pipe attributes consist of pipe factors 
and site factors. Pipe factors comprise design and 
construction related factors such as pipe size, 
buried depth etc. Site factors are the characteristics 
of the environment in which the pipes operate such 
as soil type, traffic load and so on.  

This paper applies a neural network 
approach to model the serviceability deterioration 
using the CCTV sampled images supplied by the 
City of Greater Dandenong, Australia. The 
proposed method is compared with multiple 
discriminant analysis, a classical statistical method.   

2. Background  

2.1 Factors Influencing Deterioration in 
Serviceability 

In a systematic study of deterioration problem on 
sewers in UK, the Water Research Centre [3] listed 
visual defects of serviceability deterioration as tree 
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root penetration, debris deposits, scale, encrustation 
and obstruction. Building up over time, such 
defects result in a substantial reduction of hydraulic 
capacity or a complete blockage [4]. Debris can 
accumulate in pipe segments having low flow-rates 
but might sometimes be washed away in a storm 
event. However, such peak flows may also bring in 
larger obstructions [5]. Pohls [6] conducted 
research on tree root penetration  causing sewer 
blockage and concluded that other factors such as 
climatic condition, soil type, quantity, type and 
height of trees and pipe design information such as 
pipe size, buried depth and pipe joint material. are 
also influential factors that should be considered in 
study of deterioration of stormwater systems. On 
the other hand, an increase in runoff quantity due to 
infiltration and storm events can also contribute to 
the reduction of serviceability.   

2.2 Existing Deterioration Models 
At present, no deterioration models for the 
serviceability of separate stormwater pipe systems 
have been developed. Hence, the models developed 
for sewers and other infrastructure facilities will be 
examined for application. Based on historical 
records of blockage events that had occurred, Pohls 
[6] applied the Poisson model to predict the mean 
number of blockages per unit length of a sewer 
cohort and the Logistic model to estimate the 
probability of a blockage occurrence to a sewer 
segment given its attributes. However, such 
predicted outcomes do not provide enough 
information for a proactive maintenance plan since 
they fail to separate a pipe in good condition from a 
pipe in poor condition that is subject to the 
occurrence of a potential blockage. Furthermore, in 
a young system, the blockage events happen rarely 
and thus the data may not be enough for analysis 
[7].  

Using CCTV inspection to record defects, 
the serviceability conditions of pipes are graded for 
assessment and sample data can be taken as many 
times as practicable. A few more deterioration 
models have been developed to predict structural 
condition using this kind of information and 
Markov chain theory [8]. Based on the predicted 
outcomes, they could be classified into group or 
population performance prediction [4,9-11] and 
individual prediction of performance [12]. The 

former does not indicate which pipes within the 
group should be cleaned/repaired in priority order. 
Prediction can be improved by increasing the 
numbers of groups to reduce the members of each 
group but this requires a lot more sample data [7].  

The individual model needs regular 
inspection data to validate the model and requires 
the random error of the condition data for each pipe 
to follow the same probability density. However, 
the sample data of stormwater pipe system are 
limited in quantity.  The pipe conditions are not 
regularly inspected but data is collected on a 
snapshot basis i.e. information on condition of 

the whole network of pipes is collected over a short 
period of time, rather than at regular intervals over 
a substantial period of time. Furthermore, such a 
requirement for random error may not hold for 
storm water pipes. 

Free from such limitations, a neural 
network (NN) approach (a class of soft computing 
techniques), has been used recently in prediction 
models for infrastructure systems [13-15]. From the 
NN model, a list of influential factors can be 
obtained by ranking the weights assigned to input 
factors [16,17]. The basic application of NN is for 
pattern classification which is done by learning 
from sample data (training stage) and using the 
gained knowledge (generalizing stage) to predict 
the new patterns [18].   

3. Case Study 
The City of Greater Dandenong in Victoria, 
Australia operates 800 kms of stormwater pipes. In 
an attempt to understand the condition status of the 
stormwater pipe system, CCTV inspections have 
been carried out from 1999 to 2002 on snapshot 
base, that is, a pipe segment received only one 
inspection, rather than being inspected at regular 
intervals over a long period of time. There are 
approximately 650 data points accounting for 3.4% 
of the total system length collected from 
inspections. However, based on the thought that 
older pipes would be more likely to be in critical 
condition, the City s inspection strategy was 
focused on the oldest pipes with ages from 40-65 
years and on some locations that reported flooding 
or blockages.  During the system operation since 
installation, reportedly, some minor maintenance 
and cleaning was conducted but no maintenance 
was recorded in the database.  

The structural and serviceability condition 
was graded separately using three condition states 
as mentioned in the Section 1. The dataset provided 
only seven pipe factors for analysis, as listed in 
Table 1. The factor indicating the numbers of tree 
in vicinity of pipes was incomplete with half the 
amount of total rows in the dataset. Since the 
distribution of available tree data seems to follow 
the lognormal distribution, simulated data were 
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used to compensate for the missing points. After 
cleaning the data, only 583 data points are 
acceptable for analysis.     

Table 1. Input factors used in the study 
Pipe 
Factors 

Data type Descriptions 

Size  Value Min 225 / Max 
1950mm 

Age  Value 0 / 65 years 
Depth Value 0 / 4.83metres 
Slope Value -1.85 / 22.85%  
Tree_New  Value 1 / 22 counts 

(Number of trees 
around pipe) 

Location  Category 1-under reserve 
2-under road 
3-under nature strip 
4-under easement 

Structural 
condition 

Ordinal 1-good 
2-fair 
3-poor (need 
further 
investigation) 

  

4. Neural Network Model 
 The methodology of this study used a feed forward 
neural network (NN) [19,20] to classify different 
deterioration patterns in the serviceability 
deterioration of stormwater pipes. Seven 
characteristics of pipes in case study were used as 
inputs to the neural network model. Each 
serviceability condition is assigned to a set of 
deterioration patterns that are closely related. 
Therefore, the NN model can forecast the 
serviceability condition of a pipe given its 
characteristics. A NN can capture the unknown 
non-linear or linear relationships [14]  which seem 
suitable to describe the complicated relations 
between serviceability condition and pipe attributes 
in stormwater pipes. It can also account for the 
maintenance and rehabilitation effect easily, if 
recorded, by treating that information as an input 
attribute.   

4.1 Data Preparation 
The dataset of case study was randomly split into 
three subsets, namely calibration (60%), validation 
(25%) and test (15%) to be used by the NN model. 
The calibration subset was used to estimate the 
parameters of the model (training process) while 
the validation subset was used to control estimation 

process. The test subset was used to evaluate the 
performance of the NN model in classification 
work. All data were normalized between [0 1].   

4.2 NN Configuration and Training 
The determination of the NN model configuration 
was iterated with training process.  Figure 1 
presented configuration of NN model where there 
are three neurons in the output and seven neurons 
in the input layer. Each neuron output represents 
one serviceability condition and each input neuron 
corresponds to one input pipe factors. The use of 
one hidden layer and 10 hidden neurons and back-
propagation Levenberg-Marquardt (LM) training 
function were based on trial and error searches. The 
Neural Network Toolbox (NN tool) of MATLAB® 
software package was used to support the 
computation. The mean square error (MSE) used as 
key criteria and the Tansig and Logsig functions 
employed for hidden and output layers respectively 
were available in NN tool. 

Table 2 showed comparison of MSE for 
different training functions that were tried. L-M 
training function was considered better than others. 
More details on training functions can be referred 
to NN tool manual [21].  Similarly, Figure 2 
showed MSE performance in search for suitable 
number of hidden neurons where 10 hidden 
neurons appeared to be the best compromise 
between calibrating and testing errors. Furthermore, 
Table 3 showed layout of 2 hidden layers (10-5) 
outperformed other layouts with more hidden 
layers. However, it did not show much more 
improvement comparing to one hidden layer (10 
neurons) which therefore was finally chosen for 
efficiency and simplicity.   
       

Table 2. MSE Performances of training functions   
for one hidden layer and 15 hidden neurons 

Training Function MSE 
Levenberg-Marquardt (LM) 0.11 
Resilient Back-propagation 0.182 
Scaled Conjugate Gradient 0.19 
BFGS Quasi-Newton 0.2 
Gradient Descent 0.265 
Gradient Descent with Momentum 0.28 

  

Table 3. MSE Performances of different hidden 
layer numbers using LM training function 

Layout of 
Hidden layers 

10-5 10-5-5 10-5-5-5 

Calibrating MSE 0.17 0.173 0.18 
Testing MSE 0.22 0.225 0.23 
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Fig.2 MSE with different number of hidden 
neurons  

4.3  Influential Factors 
The influential factors relating to serviceability 
deterioration are determined by ranking overall 
importance of the factors. The overall importance is 
computed using the connection weight analysis 
[17] with one proposed step to suit this study. Table 
4 presents an example of steps to compute overall 
importance of the jth factor in the NN model, 
consisting of one hidden layer of three neurons and 
one output layer of two neurons. Under the joint 
probability principal, the overall importance of the 
jth factor is the product of the magnitudes of its 
important weights that are computed to each of the 
output neurons (pipe conditions). Then, the ranking 

from the most to least influential factors will be 
established by sorting the overall importance value 
of each factor in descending order.  

Table 4. Example of computing steps for 
overall importance of an input factor. 

Hidden neuron Factor Xj 
1 2 3 

Weight assigned between 
Xj and hidden neuron 

A1 A2 A3 

Weight assigned between 
hidden neuron and kth 
output neuron 

B1 B2 B3 

Importance weight of Xj to 
kth pipe condition 

Zk =  Ai x Bi  

where i =1 to 3 
Overall importance of Xj to 
prediction model 
(Proposed step) 

OZ =  abs(Zk) 
where k =1 to 2 

       

4.4 Model Performance Evaluation 
The predicted outputs are compared with 

the observed ones to identify whether the prediction 
is correct or not. The performance rate of the model 
or the rate of correct prediction on calibration set 
and testing set was calculated using the Equation 1 
[22]. The results were shown in Table 4.     

oints      
*100(%)

pdataofNumber

predictioncorrectofNumber
eRatePerformanc

 

(1)   

5. Multiple Discriminant Analysis 
(MDA)  
In order to confirm the superiority of NN model 
over classical methods, MDA was also carried out 
in this study. The popular multiple regression 
model [12,23] can not be used because its outcomes 
must be in metric unit which is not suitable for this 
case.  Instead, MDA can discriminate categorized 
objects from the assumed linear relationship of 
independent factors (factors) describing that object 
[24].  

The classifying task in MDA is performed 
simply. A set of linear disciminant functions, as 
shown in Equation 2, is used to compute a set of 
corresponding discriminant Z scores for each test 
object.  The number of discriminant functions is 
equal to the number of classes minus one i.e. K-1. 
The constant and coefficients of discriminant 
functions are determined by maximizing the 
between-class variance relative to the within-class 
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Fig.1  Configuration of NN model  
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variance from sample data. The set of computed Z 
scores for the test object locate the position of that 
object in the K-1 dimensional real space as shown 
in Figure 3. The test object is assigned to the class 
whose centroid is closest to the test object. The 
centroid of the class is computed by averaging the 
Z scores of sample data on each discriminant 
function.  

jkjkkikk XBXBXBBD ...22110  

(2) 
where k = 1 to 2; Dk is the kth discriminant 
function; Bk0 is the constant and Bk is the 7-
dimensional vector of standardized coefficients for 
the kth discriminant function; X is the vector of 7 
input factors.   

The significant factors in the MDA model 
are determined using the stepwise method and 
statistical F-test [24]. The stepwise method puts the 
factors into the model one at a time. The factor just 
entered will be rejected if the F-test fails. 

The SPSS® statistical software package 
version 13 [25] was used to estimate parameters 
using joint calibration and validation subset and 
classify the testing subset for MDA model.                   

6. Findings and Discussions  

6.1. Goodness of Fit test 
The Chi-Square test 2

 

for Goodness of Fit [26] 
was carried out on the testing dataset for NN model 
using null hypothesis ( 0H ) that the predicted 

targets and observed targets are not statistically 
different. The result ( 2.9)(8.8 2,01.0

22 ) 
accepted the null hypothesis, suggesting that the 

NN model is a worthwhile option for modelling 
serviceability deterioration of stormwater pipes.  

6.2. Comparison of Model Performance 
It can be seen from Table 5 that NN model is 
performing a little better than the MDA model in 
classification work at both calibration and testing 
dataset. However, the Performance Rate is not high 
for either model.   

          

6.3. Significant Factors 
A stepwise method using the statistical F- test [24] 
was applied to the MDA model to identify 
significant factors influencing serviceability 
deterioration. Among the seven input factors, only 
four input factors were significantly influential as 
shown in Table 6, which indicated the ranking from 
highest to lowest. Similarly the ranking of 
significant factors identified from the NN model 
were computed using the above mentioned 
modified connection weight analysis. The top four 
factors from NN model were identical with those 
from the MDA model except the order was 
reversed for the top three factors (Slope, Size and 
Structure) as can be seen from Table 6.               

In order to clarify how each factor affects 
the serviceability deterioration, a univariate one-
way ANOVA test [27] was carried out. The results 
in Figure 4 indicated that the pipes with the steeper 
slopes and the larger size have a better 
serviceability condition. However, the influence of 
the depth factor is not clear. Incongruously, the 
serviceability condition seems to get poorer with 
better structural condition of the pipes. 

Discriminant function 1 
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Table 5. Comparison of performance rate  
between NN and MDA model  

Performance Rate (%) 

 

Calibration 
dataset 

Testing 
dataset 

NN model 55 53.5 
MDA model 49.4 47.8 

      

Table 6. Significant factors in 
descending order 

NN model MDA model 
Slope Structure 
Size Slope 
Structure Size 
Depth Depth 
Location  
Age  
Tree_new  
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One-way ANOVA between serviceability 
conditions and input factors
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Fig.4 Comparisons of factor mean values.  

6.4. Discussion 
The low performance rate of both models might be 
due to the following factors. Firstly, using an 
overall condition-grading scheme and one model 
may not be adequate to capture many different 
mechanisms in play causing deterioration of 
serviceability such as root intrusion, debris 
deposition and pipe structural failure. Each 
mechanism should be modelled with its specific 
factors. The overall prediction will be based on the 
outcomes from different models. Secondly, many 
factors were missed in the supplied dataset such as 
traffic condition, tree type, pipe joint etc. Thirdly, 
subjective grading and measurement errors of 
existing inspection techniques may be the 
contributing factors. Lastly, MDA using straight 
line (linear relationship) to separate classes of 
object might not be suitable, the use of non-linear 
discriminant functions could be a considerable 
solution. From performance rate of NN models, 
there is a probability of 0.5 that a prediction of NN 
model may be wrong hence; an expert opinion 
should be sought to evaluate the predicted outcome 
when applied in reality.  

It is not surprising that age was not a 
significant factor, since serviceability deterioration 
seems to depend on the users treatment and 
associated factors. As expected, structural 
condition, pipe slope, pipe depth and pipe size were 
found to be significant factors.  
Steeped pipes will not favour the accumulation of 
sediment. The larger pipes usually are the deeply 
buried main drainage pipes. Since stormwater pipes 
use gravity flow the sediment will be washed away 
in high flow rates. A correlation test was then 
conducted for pipe size and pipe depth to check 
whether an indirect inference for pipe depth could 

be made. The significance of fair correlation 
indicated that the deeper the pipes the better the 
serviceability. This is consistent with the 
assumption of gravity flow.  
However, the association of the good serviceability 
condition with the poor structural condition of 
pipes as shown in Figure 4 was not expected. The 
reason could be that the inspections for structural 
condition were performed only in clean pipes and 
were reportedly focused on old pipes. Therefore, 
the number of recorded pipes in poor structural 
condition may have been unusually high. 
Randomly sampled data in the future may provide 
for a more accurate assessment of the relationship 
between the structural and serviceability 
conditions. Furthermore, the lack of significance in 
the test for the tree and location factors implied that 
more detailed information should be collected. For 
example, trees on top of pipes would have much 
more affection than distanced trees. Tree type and 
tree age would allow a better relationship to be 
established to the occurrence of root intrusion.  The 
four groups in the location factor did not appear to 
cause much different effects on serviceability 
deterioration. Instead, information on the existence 
of below sewers or ground water would be more 
adequate.  

7. Conclusions 
This paper has presented a study using a Neural 
Network model for modelling serviceability 
deterioration of concrete stormwater pipes. The 
proposed model was compared against MDA 
model using a traditionally parametric method. The 
results show that prediction performance of NN 
was not much higher than of MDA. Despite the low 
performance encountered in this study, the 
application of NN in modelling deterioration of 
stormwater pipes seems promising. A better and 
more consistent data collection regime may help to 
improve the performance levels of the NN model. 
On the other hand, the use of non-linear 
discriminant functions could possibly increase the 
performance of MDA as well. Both models also 
identified the top four significant factors 
controlling the deterioration process. They are pipe 
size, depth, slope and structural condition. The less 
significant of remaining three factors namely, age, 
location and number of trees implied that collecting 
adequate factors with useful information is also 
essential to the model s performance.  
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