

Boolean Function Complexity and Neural Networks

ALI ASSI P.W.C. PRASAD AZAM BEG
Department of Electrical

 Engineering,
United Arab Emirates

University, UAE

College of Information
Technology,

United Arab Emirates
University, UAE

College of Information
Technology,

United Arab Emirates
University, UAE

Abstract - A new neural network (NN) approach is proposed in this paper to estimate the Boolean function (BF)
complexity. Large number of randomly generated single output BFs has been used and experimental results show
good correlation between the theoretical results and those predicted by the NN model. The proposed model is
capable of predicting the number of product terms (NPT) in the BF that gives an indication on its complexity.
.
Key-Words: Boolean functions, Neural Networks, Complexity evaluation, Modeling, Simulation

1 Introduction
The driving force behind the rapid growth of VLSI
technologies has been the constant reduction of the
feature size of devices (i.e. the minimum transistor
size). According to Moore’s law [1] the number of
transistors on a single chip doubles every year, and it
has withstood the test of time since Gordon Moore
made this observation in 1965. The increasing
complexity of modern Very Large Scale Integration
(VLSI) circuitry is only manageable through
advanced Computer-Aided Design (CAD) systems
that allow efficient handling of BFs [2].
 The complexity of BFs is one of the central and
classical topics in the theory of computation. BFs and
their complexity have been investigated for a long
time [2], [3], [4]. Mathematicians and computer
scientists have long tried to classify BFs according to
various complexity measures, such as the minimal
size of Boolean circuits needed to compute specific
functions [5].
BF representations have direct impact on the
computation time and memory requirements in the
design of digital circuits. The efficiency of any
method depends on the complexity of the BF [6].
Research on the complexity of BFs in non-uniform
computation models is now part of one of the most
interesting and important areas in the area of
theoretical computer science [7]. Based on its BFs
representation, it will be useful to have an estimation

of the circuit complexity prior to making decisions on
the feasibility of the design [8].
Over the past two decades most of the complexity-
related problems have been solved using various
mathematical methods [9]. Apart from this lot of
research work has been done on the computational
properties of NNs [10], [11] and even on a measure
for the complexity of BFs related to their
implementation in NNs. The measure of efficiency of
the circuit have been addressed within the area of
circuit complexity [10],[12], where the complexity of
BFs is analyzed in terms of their implementation on
different kind of circuits. In solving these problems
the important contribution of the NNs is their
capacity for learning from experience.
The main objective of this paper is to introduce a
novel method based on NN for the estimation of the
BF complexity for any number of variables and for
any NPT. The model will enable the design
feasibility and performance to be analyzed without
building the circuit. The proposed method is also
capable of predicting the maximum complexity and
the NPT in the BF that leads to the maximum
complexity. In the second section of this paper,
background information pertaining to the NNs is
given. The proposed complexity model is explained
in the third and fourth sections.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp85-90)

2 Overview of Neural Networks
NNs mimic the ability of a human brain to find
patterns and uncover hidden relationships in data.
NNs can be more effective than statistical techniques
for organizing data and predicting results, and are
very efficient in modeling non-linear systems [13],
[14], [15]. An NN is defined as a computational
system comprising of simple but highly
interconnected processing elements PEs (or neurons)
(Fig. 1) [16]. PEs are NN equivalents of biological
neurons. Similarly, NN interconnections are
equivalents of synapses that connect a neuron to
others. Information is processed by the PEs by
dynamically responding to their inputs. Unlike
conventional computers that process instruction and
data stored in the memory in a sequential manner, the
NNs produce outputs based on a weighted sum of all
inputs in a parallel fashion [13].

Fig. 1. Processing element (PE) – building block of a
neural network

In Fig. 1 the inputs (i(0)..i(n-1)) to a PE are scaled
with weights (w(0) .. w(n-1)) and summed up before
being passed through an activation function. The
activation function determines whether a PE activates
(fires) or not. A sigmoid (non-linear) activation
function has an s-shaped output between the limits [0,
1]. The function (1) is defined as [17]:

)e(1
1 y x-+

=
 (1)

Each input of an NN corresponds to a single attribute
of the system being modeled. The output of the NN is
the prediction we are trying to make.
Fig. 2 shows the topology of a simple 5-layer feed-
forward NN with 2 inputs and one output. The NN
has 2 input neurons (PE(ip1), PE(ip2)), three hidden
layers with 5 neurons each (PE(hnm) is the mth
neuron in nth hidden layer), and one neuron in the
output layer (PE(op1)) [13]. The NNM is fully-
connected, meaning; all neurons in one layer connect
to all neurons in the next layer.

Fig. 2. Topology of 5-layer feed-forward neural
network

NNs use different types of learning (or training)
mechanisms, the most common of them being
supervised learning. In this method of learning, a set
of inputs is provided to the NN and its output is
compared with the desired output. The difference
between the actual and the desired outputs is used to
adjust the weights (Fig. 1) to different PEs in the
network. The process of adjusting weights is repeated
until the output falls within an acceptable range.
To ensure a robust NN design, the set of input data
and corresponding output data has to be chosen
carefully. The input-output data set for an NN is
called a training set. Additionally, special attention
has to be paid to the formatting and scaling of the
data for effective NN training [13]. The available
data is divided into training and validation sets. An
NN is only trained with the training set. Validation
set is run on the NN to verify that the inputs are
producing desirable outputs. If the validation phase
produces large deviations, the training set or the
network structure needs to be re-examined; re-
training is required in this case [13].

3 Experimental Analysis of Boolean
Function Complexity
For each variable count n between 1 and 14 inclusive
and for each term count between 1 and 2n-1, 100
Sum of Product (SOP) terms were randomly
generated and the Colorado University Decision
Diagram (CUDD) package [18] was used to
determine the complexity of the BF in terms of nodes
of its Binary Decision Diagram (BDD)
representation. This process was repeated until the
BF complexities (i.e. number of nodes) became 1.
Then the experimental graphs for BF complexity
(Example: for 10 variables, as shown in Figure 3)

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp85-90)

were plotted against the product term count for each
number of variables.

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251 301 351 401 451 501 551 601

Number of Product terms

C
om

pl
ex

ity

Experimental

Fig. 3: Experimental results for Boolean complexity
for 10 variables

The above graphs indicate that the BF complexity in
general increases as the NPT increases. This is clear
from the rising edge of the curve. At the end of the
rising edge in the graph reaches a maximum
complexity. This peak indicates the maximum BF
complexity (134) that any BF with 10 variables can
have independently of the NPT. Apart from that the
peak also specifies the NPT (critical limit) of a BF
that leads to the maximum complexity for any BF
with 10 variables.
The NPT that leads to the maximum for 10 variables
is 54. If the NPT increases above the critical limit, as
expected, the product terms starts to simplify and the
BF complexity will reduce. The Complexity graph
shown in Figure 1 indicates that as the NPT increases
the complexity of the BF decreases at a slower rate
and ultimately reaches 0.

4 Application of Neural Networks to
Boolean function Complexity Modeling
This section covers the definition and implementation
of the Neural Network Model (NNM) for modeling
the BF complexity.

4.1 Data collection
For the NNM in this paper, the training and
validation data sets were obtained by the experiment
done in section 3.

4.2 Model Definition
The purpose of the NNM in this research was to
model the complexity of BFs. Inputs to the NNMs
were (1) the number of variables, and (2) NPT (min-
terms) (Fig. 4).

Fig. 4. Inputs and output of the NNM

4.3 Data Pre-Processing
Pre-processing the training and validations sets takes
a considerable amount of resources for a practical and
reliably functioning NNM [15], [19]. In our research,
the first data pre-processing step was to transform the
data set in such a way that inputs have equitable
distribution of importance. In other words, the larger
absolute values of an input should not have more
influence than the inputs with smaller magnitudes
[20]. The need of such equitable distribution can be
explained with the set of figures shown below. Figure
5 shows the raw (original) data for 2 to 14 variables.
Notice that the plots for 2- to 9-variables are hardly
visible when all variables are plotted on the same
scale. If the data were presented to the NN for
training in this case, only 10- to 14- variable cases
could be learnt by the NN and 2- to 9-variables
values could be ignored. So in order to provide
similar importance to all variable values (2 to 14), we
performed a logarithmic transformation of the
product terms (min-terms) and complexity (number
of nodes) inputs. The resulting data is plotted in
Figure 6. As we can see now all different plots (from
2 to 14 variables) are in similar ranges and make it
easier for NN to learn them.

In order to ‘use’ or ‘run’ a trained NN, de-
normalization and de-transformation has to be done
to restore the predicted outputs to the original ranges.
Steps employed in 'training' and 'running' the network
are summarized here:

Steps for Training the NNM:
a) Take logarithm of actual values of the inputs and
output
b) Train the NN with values from step (a)

Steps for Using/Running the NNM:
a) Take logarithm of the actual values of the input
b) Present the values from step (a) to the NNM
c) Apply anti-logarithm to the output of the NNM to
get the actual result

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp85-90)

0

200

400

600

800

1000

1200

1 401 801 1201 1601 2001 2401 2801 3201 3601

Number of Product terms

C
om

pl
ex

ity
2 Var
3 Var
4 Var
5 Var
6 Var
7 Var
8 Var
9 Var
10 Var
11 Var
12 Var
13 Var
14 Var

Fig. 5. Raw (untransformed) data

0
0.5

1
1.5

2
2.5

3
3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Product terms (log)

C
om

pl
ex

ity
 (l

og
)

2 var

14 var

Fig. 6. Log-scaled (transformed) data

4.4 NN Training and Testing
We used an NN-modeling software package called
Brain Maker (version 3.75 for MS- Windows [21] to
create and test our NNMs. Brain Maker’s back-
propagation NNs were fully connected, meaning all
inputs were connected to all hidden neurons, and all
hidden neurons were connected to the outputs. The
activation function for the hidden and output layers
was a sigmoid function. The difference between the
network’s actual output and the desired output was
treated as the error to be minimized.
We acquired a total of 19044 data sets (also called
facts/training facts) during our simulations of BFs.
90% of the data sets (facts) were used as the training
set, while the remaining 10% were used as the
validation set. We stopped the NN training sessions,
when 98% of the facts were learnt with less than 5%
mean squared error [19].
A general rule is that as the number of hidden layers
increases, the prediction performance goes up, but
only up to a certain point, after which the NNM
performance starts to deteriorate [19]. To find the

optimum topologies for our NNMs, we experimented
with up to 3 hidden layers; each layer consisted on a
different number of neurons. The details of some of
our NNMs experiments are listed in Table 1. "Facts
learnt" in this table refers to the number of
facts/examples that the NNM was able to learn (with
< 5% error) during the training phase. (The 5% error
allowance was used to help the NNM generalize
better [19]).

Table 1 : Configuration & Training Statistics *

CONFIGURATION TRAINING STATISTICS

N
o.

In
pu

t L
ay

er
 N

eu
ro

ns

H
id

de
n

La
ye

r 1
 N

eu
ro

ns

H
id

de
n

La
ye

r 2
 N

eu
ro

ns

H
id

de
n

La
ye

r 3
 N

eu
ro

ns

O
ut

pu
t N

eu
ro

ns

Fa
ct

s L
ea

rn
t

Fa
ct

s N
ot

 L
ea

rn
t

%
 F

ac
ts

 L
ea

rn
t

Ep
oc

hs

1 2 10 1 12524 4789 72.3% 1047
2 2 20 1 16208 1105 93.6% 623
3 2 25 1 16059 1254 92.8% 745
4 2 30 1 15844 1469 91.5% 630
5 2 5 5 1 16889 424 97.6% 681
6 2 7 7 1 15261 2052 88.1% 2133
7 2 20 20 1 16987 326 98.1% 100
8 2 5 5 5 1 17028 285 98.4% 98
9 2 5 10 5 1 17049 264 98.5% 24

10 2 20 20 20 1 17079 234 98.6% 17
* Brain Maker training parameters: Training tolerance =
0.05; testing tolerance = 0.05; learning rate adjustment
type = heuristic [21].

The performance metric for an NNM was the
"percentage of facts learnt with 95% (or more)
accuracy". In our experiments, as we increased both
the number of hidden layers and the number of
neurons in each of these layers, the NNMs trained
with fewer epochs. However, having larger number
of neurons in each hidden layer did not significantly
increase the learning accuracy as we see in lines #8,
#9 and #10 of the table. We chose a 5-layer NNM (#8
in the table) with 5 neurons in each of its hidden
layers. This configuration provided nearly the same
training accuracy as its much larger 3-layer
counterparts (#9 and #10).

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp85-90)

4.5 NN Modeling Results and Analysis
Due to the inherent nature of NNMs, the input values
used for running an NNM should be kept somewhat
close to, but not necessarily the same as, the input
values in the training set. Any significant deviations
of the running set from the training set can provide
misleading results. We used an arbitrary set of values
for number-of-variables and NPT and used the NNM
to predict the number of nodes (complexity).
Figure 7 indicates the comparison for experimental
results and NNM predictions of BF complexity for 10
variables. It can be inferred that the NNM result
provides a very good approximation of the BF
complexity. The same work has been repeated for
BFs with 2 to 15 variables. Fig. 8, 9, and 10 illustrate
experimental and predicted NNM results for variables
8, 12 and 14 respectively.

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251 301 351 401 451 501 551 601

Number of Product terms

C
om

pl
ex

ity

Experimental
Neural Network

Fig. 7. Complexity analysis of Experimental / NNMs
for 10 variables

1

10

100

1 31 61 91 121 151 181 211 241

Number of Product terms

C
om

pl
ex

ity

Experimental
Neural Network

Fig. 8. Complexity analysis of Experimental / NNM s
for 8 variables

1

10

100

1000

1 161 321 481 641 801 961 1121 1281 1441

Number of Product terms

C
om

pl
ex

ity

Experimental
Neural Network

Fig. 9. Complexity analysis of Experimental / NNM s
for 12 variables

1

10

100

1000

10000

1 501 1001 1501 2001 2501 3001 3501

Number of Product terms

C
om

pl
ex

ity

Experimental
Neural Network

Fig.10. Complexity analysis of Experimental / NNMs
for 14 variables

5 Conclusion
In this research work, we implemented a new way of
modeling the complexity of BFs based on NN. An
advantage of our model is that it is a single integrated
model for different number of variables and NPT.
The results from our experiments demonstrated that
the NNMs were capable of providing useful clues
about the complexity of the final circuit. Once NNMs
had been developed, they could be used to conduct
further experiments with different types of inputs, in
a fraction of time what a circuit simulator would take.
Future work will be mainly concentrated on having
wider range of variables to verify the proposed
method with real benchmark circuits.

References:
[1] G. E. Moore: Progress in Digital Integrated

Electronics, IEEE IEDM, 1975, pp. 11-13.
[2] R.E Bryant, Graph-based algorithm for boolean

function manipulation, IEEE Transactions on
Computers, 1986, pp. 677-691.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp85-90)

[3] M. Fujita, H. Fujisawa, and N. Kawato,
Evaluation and Improvements of Boolean
Comparison Method Based on Binary Decision
Diagrams, Proceedings International
Conference CAD (ICCAD- 88), November
1988, pp. 2-5.

[4] 0. Coudert. C. Berthec and J. Madre,
Verification of Sequential Machines using
Boolean Function Vectors, IMEC-IFIP
International Workshop on Applied Formal
Methods for Correct VLSI Design, 1989, pp.
759-764.

[5] M. Nemani, and F.N. Najm, High-level power
estimation and the area complexity of boolean
functions, Proceedings of IEEE Intl. Symposium
on Low Power Electronics and Design, 1996,
pp: 329-334.

[6] S. Bhanja, K. Lingasubramanian and N.
Ranganathan, Estimation of switching activity
in sequential circuits using dynamic bayesian
networks, Proceedings of VLSI Design, 2005,
pp. 586-591.

[7] Ingo Wegener, The Complexity of Boolean
Functions, John Wiley and Sons Ltd, 1987.

[8] A. Assi, P.W. C. Prasad , B. Mills, and A. El-
Chouemi, Empirical Analysis and Mathematical
Representation of the Path Length Complexity
in Binary Decision Diagrams, Journal of
computer Science, Science Publications, Vol.
2(3), 2006, pp. 236-244.

[9] Van Eijk, C.A.J., Formal methods for the
verification of digital circuits. Ph.D. Thesis,
Eindhoven University of Technology,
Netherlands, 1977.

[10] I Parberry, Circuit Complexity and Neural
Networks, MIT Press, 1994.

[11] K. Y. Siu, V. P Roychowdhury, and T. Kailath,
Discrete Neural Computation – A theoretical
Foundation, Prentice Hall, 1995.

[12] I. Wegener, The Complexity of Boolean
functions, Wiley and Sons Inc., 1987.

[13] M. Caudill, AI Expert: Neural Network Primer,
Miller Freeman Publications 1990.

[14] R. E Uhrig, Introduction to Artificial Neural
Networks, Proceedings of the IEEE IECON
21st International Conference on Industrial
Electronics, Control and Instrumentation, Vol.
1, November 1995, pp. 33-37.

[15] K. Yale, Preparing the right data for training
neural networks, IEEE Spectrum, Vol. 34, Issue
3, March 1997, pp. 64-66.

[16] G. Stegmayer, and O. Chiotti, The Volterra
representation of an electronic device using the
Neural Network parameters, Latin American

Conference on Informatics (CLEI’2004),
September 2004, pp. 266-272.

[17]http://www.eco.utexas.edu/faculty/Kendrick/front
pg/NeuralNets.htm

[18] F. Somenzi, CUDD: CU Decision Diagram
Package, ftp://vlsi.colorado.edu/ pub/, 2003.

[19] J. Lawrence, Introduction to Neural Networks –
Design, Theory and Applications, California
Scientific Software Press, 1994.

[20] T. Masters, Signal and Image Processing with
Neural Networks, John Wiley & Sons, Inc.,
1994.

[21] Brain Maker – User’s Guide and Reference
Manual, 7th edition, California Scientific
Software Press, Jun. 1998.

Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12-14, 2006 (pp85-90)

