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Abstract - A new neural network (NN) approach is proposed in this paper to estimate the Boolean function (BF) 
complexity. Large number of randomly generated single output BFs has been used and experimental results show 
good correlation between the theoretical results and those predicted by the NN model. The proposed model is 
capable of predicting the number of product terms (NPT) in the BF that gives an indication on its complexity.   
. 
Key-Words: Boolean functions, Neural Networks, Complexity evaluation, Modeling, Simulation 
 
1 Introduction 
The driving force behind the rapid growth of VLSI 
technologies has been the constant reduction of the 
feature size of devices (i.e. the minimum transistor 
size). According to Moore’s law [1] the number of 
transistors on a single chip doubles every year, and it 
has withstood the test of time since Gordon Moore 
made this observation in 1965. The increasing 
complexity of modern Very Large Scale Integration 
(VLSI) circuitry is only manageable through 
advanced Computer-Aided Design (CAD) systems 
that allow efficient handling of BFs [2]. 
 The complexity of BFs is one of the central and 
classical topics in the theory of computation. BFs and 
their complexity have been investigated for a long 
time [2], [3], [4]. Mathematicians and computer 
scientists have long tried to classify BFs according to 
various complexity measures, such as the minimal 
size of Boolean circuits needed to compute specific 
functions [5].  
BF representations have direct impact on the 
computation time and memory requirements in the 
design of digital circuits. The efficiency of any 
method depends on the complexity of the BF [6]. 
Research on the complexity of BFs in non-uniform 
computation models is now part of one of the most 
interesting and important areas in the area of 
theoretical computer science [7].  Based on its BFs 
representation, it will be useful to have an estimation 

of the circuit complexity prior to making decisions on 
the feasibility of the design [8]. 
Over the past two decades most of the complexity-
related problems have been solved using various 
mathematical methods [9]. Apart from this lot of 
research work has been done on the computational 
properties of NNs [10], [11] and even on a measure 
for the complexity of BFs related to their 
implementation in NNs. The measure of efficiency of 
the circuit have been addressed within the area of 
circuit complexity [10],[12], where the complexity of 
BFs is analyzed in terms of their implementation on 
different kind of circuits. In solving these problems 
the important contribution of the NNs is their 
capacity for learning from experience. 
The main objective of this paper is to introduce a 
novel method based on NN for the estimation of the 
BF complexity for any number of variables and for 
any NPT. The model will enable the design 
feasibility and performance to be analyzed without 
building the circuit. The proposed method is also 
capable of predicting the maximum complexity and 
the NPT in the BF that leads to the maximum 
complexity. In the second section of this paper, 
background information pertaining to the NNs is 
given. The proposed complexity model is explained 
in the third and fourth sections. 
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2 Overview of Neural Networks  
NNs mimic the ability of a human brain to find 
patterns and uncover hidden relationships in data. 
NNs can be more effective than statistical techniques 
for organizing data and predicting results, and are 
very efficient in modeling non-linear systems [13], 
[14], [15]. An NN is defined as a computational 
system comprising of simple but highly 
interconnected processing elements PEs (or neurons) 
(Fig. 1) [16]. PEs are NN equivalents of biological 
neurons. Similarly, NN interconnections are 
equivalents of synapses that connect a neuron to 
others. Information is processed by the PEs by 
dynamically responding to their inputs. Unlike 
conventional computers that process instruction and 
data stored in the memory in a sequential manner, the 
NNs produce outputs based on a weighted sum of all 
inputs in a parallel fashion [13].  
 

 
 
Fig. 1. Processing element (PE) – building block of a 
neural network 
 
In Fig. 1 the inputs (i(0)..i(n-1)) to a PE are scaled 
with weights (w(0) .. w(n-1)) and summed up before 
being passed through an activation function. The 
activation function determines whether a PE activates 
(fires) or not. A sigmoid (non-linear) activation 
function has an s-shaped output between the limits [0, 
1]. The function (1) is defined as [17]:          

        )e(1
1 y x-+

=
                       (1) 

 
Each input of an NN corresponds to a single attribute 
of the system being modeled. The output of the NN is 
the prediction we are trying to make.  
Fig. 2 shows the topology of a simple 5-layer feed-
forward NN with 2 inputs and one output. The NN 
has 2 input neurons (PE(ip1), PE(ip2)), three hidden 
layers with 5 neurons each (PE(hnm) is the mth 
neuron in nth hidden layer), and one neuron in the 
output layer (PE(op1)) [13]. The NNM is fully-
connected, meaning; all neurons in one layer connect 
to all neurons in the next layer.   

 
 

 
 
Fig. 2. Topology of 5-layer feed-forward neural 
network 
 
NNs use different types of learning (or training) 
mechanisms, the most common of them being 
supervised learning. In this method of learning, a set 
of inputs is provided to the NN and its output is 
compared with the desired output. The difference 
between the actual and the desired outputs is used to 
adjust the weights (Fig. 1) to different PEs in the 
network. The process of adjusting weights is repeated 
until the output falls within an acceptable range.  
To ensure a robust NN design, the set of input data 
and corresponding output data has to be chosen 
carefully. The input-output data set for an NN is 
called a training set. Additionally, special attention 
has to be paid to the formatting and scaling of the 
data for effective NN training [13]. The available 
data is divided into training and validation sets. An 
NN is only trained with the training set. Validation 
set is run on the NN to verify that the inputs are 
producing desirable outputs. If the validation phase 
produces large deviations, the training set or the 
network structure needs to be re-examined; re-
training is required in this case [13]. 
 
3 Experimental Analysis of Boolean 
Function Complexity 
For each variable count n between 1 and 14 inclusive 
and for each term count between 1 and 2n-1, 100 
Sum of Product (SOP) terms were randomly 
generated and the Colorado University Decision 
Diagram (CUDD) package [18] was used to 
determine the complexity of the BF in terms of nodes 
of its Binary Decision Diagram (BDD) 
representation. This process was repeated until the 
BF complexities (i.e. number of nodes) became 1. 
Then the experimental graphs for BF complexity 
(Example: for 10 variables, as shown in Figure 3) 
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were plotted against the product term count for each 
number of variables.  
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Fig. 3: Experimental results for Boolean complexity 
for 10 variables 
 
The above graphs indicate that the BF complexity in 
general increases as the NPT increases. This is clear 
from the rising edge of the curve. At the end of the 
rising edge in the graph reaches a maximum 
complexity. This peak indicates the maximum BF 
complexity (134) that any BF with 10 variables can 
have independently of the NPT. Apart from that the 
peak also specifies the NPT (critical limit) of a BF 
that leads to the maximum complexity for any BF 
with 10 variables. 
The NPT that leads to the maximum for 10 variables 
is 54. If the NPT increases above the critical limit, as 
expected, the product terms starts to simplify and the 
BF complexity will reduce. The Complexity graph 
shown in Figure 1 indicates that as the NPT increases 
the complexity of the BF decreases at a slower rate 
and ultimately reaches 0.  
 
4 Application of Neural Networks to 
Boolean function Complexity Modeling 
This section covers the definition and implementation 
of the Neural Network Model (NNM) for modeling 
the BF complexity.  
 
4.1 Data collection 
For the NNM in this paper, the training and 
validation data sets were obtained by the experiment 
done in section 3. 
 
4.2 Model Definition  
The purpose of the NNM in this research was to 
model the complexity of BFs. Inputs to the NNMs 
were (1) the number of variables, and (2) NPT (min-
terms) (Fig. 4).  

 

 
 
Fig. 4. Inputs and output of the NNM 
 
4.3 Data Pre-Processing 
Pre-processing the training and validations sets takes 
a considerable amount of resources for a practical and 
reliably functioning NNM [15], [19]. In our research, 
the first data pre-processing step was to transform the 
data set in such a way that inputs have equitable 
distribution of importance. In other words, the larger 
absolute values of an input should not have more 
influence than the inputs with smaller magnitudes 
[20]. The need of such equitable distribution can be 
explained with the set of figures shown below. Figure 
5 shows the raw (original) data for 2 to 14 variables. 
Notice that the plots for 2- to 9-variables are hardly 
visible when all variables are plotted on the same 
scale. If the data were presented to the NN for 
training in this case, only 10- to 14- variable cases 
could be learnt by the NN and 2- to 9-variables 
values could be ignored. So in order to provide 
similar importance to all variable values (2 to 14), we 
performed a logarithmic transformation of the 
product terms (min-terms) and complexity (number 
of nodes) inputs. The resulting data is plotted in 
Figure 6. As we can see now all different plots (from 
2 to 14 variables) are in similar ranges and make it 
easier for NN to learn them.  
 
In order to ‘use’ or ‘run’ a trained NN, de-
normalization and de-transformation has to be done 
to restore the predicted outputs to the original ranges. 
Steps employed in 'training' and 'running' the network 
are summarized here:  
 
Steps for Training the NNM:  
a) Take logarithm of actual values of the inputs and 
output  
b) Train the NN with values from step (a) 
 
Steps for Using/Running the NNM:  
a) Take logarithm of the actual values of the input 
b) Present the values from step (a) to the NNM 
c) Apply anti-logarithm to the output of the NNM to 
get the actual result   
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Fig. 5. Raw (untransformed) data 
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Fig. 6. Log-scaled (transformed) data 
 
4.4 NN Training and Testing 
We used an NN-modeling software package called 
Brain Maker (version 3.75 for MS- Windows [21] to 
create and test our NNMs. Brain Maker’s back-
propagation NNs were fully connected, meaning all 
inputs were connected to all hidden neurons, and all 
hidden neurons were connected to the outputs. The 
activation function for the hidden and output layers 
was a sigmoid function. The difference between the 
network’s actual output and the desired output was 
treated as the error to be minimized.  
We acquired a total of 19044 data sets (also called 
facts/training facts) during our simulations of BFs. 
90% of the data sets (facts) were used as the training 
set, while the remaining 10% were used as the 
validation set. We stopped the NN training sessions, 
when 98% of the facts were learnt with less than 5% 
mean squared error [19].  
A general rule is that as the number of hidden layers 
increases, the prediction performance goes up, but 
only up to a certain point, after which the NNM 
performance starts to deteriorate [19]. To find the 

optimum topologies for our NNMs, we experimented 
with up to 3 hidden layers; each layer consisted on a 
different number of neurons. The details of some of 
our NNMs experiments are listed in Table 1. "Facts 
learnt" in this table refers to the number of 
facts/examples that the NNM was able to learn (with 
< 5% error) during the training phase. (The 5% error 
allowance was used to help the NNM generalize 
better [19]).  
  
Table 1 : Configuration & Training Statistics * 

CONFIGURATION TRAINING STATISTICS 
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1 2 10   1 12524 4789 72.3% 1047 
2 2 20   1 16208 1105 93.6% 623 
3 2 25   1 16059 1254 92.8% 745 
4 2 30   1 15844 1469 91.5% 630 
5 2 5 5  1 16889 424 97.6% 681 
6 2 7 7  1 15261 2052 88.1% 2133 
7 2 20 20  1 16987 326 98.1% 100 
8 2 5 5 5 1 17028 285 98.4% 98 
9 2 5 10 5 1 17049 264 98.5% 24 

10 2 20 20 20 1 17079 234 98.6% 17 
* Brain Maker training parameters: Training tolerance = 
0.05; testing tolerance = 0.05; learning rate adjustment 
type = heuristic [21].  
 
The performance metric for an NNM was the 
"percentage of facts learnt with 95% (or more) 
accuracy". In our experiments, as we increased both 
the number of hidden layers and the number of 
neurons in each of these layers, the NNMs trained 
with fewer epochs. However, having larger number 
of neurons in each hidden layer did not significantly 
increase the learning accuracy as we see in lines #8, 
#9 and #10 of the table. We chose a 5-layer NNM (#8 
in the table) with 5 neurons in each of its hidden 
layers. This configuration provided nearly the same 
training accuracy as its much larger 3-layer 
counterparts (#9 and #10).  
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4.5 NN Modeling Results and Analysis 
Due to the inherent nature of NNMs, the input values 
used for running an NNM should be kept somewhat 
close to, but not necessarily the same as, the input 
values in the training set. Any significant deviations 
of the running set from the training set can provide 
misleading results. We used an arbitrary set of values 
for number-of-variables and NPT and used the NNM 
to predict the number of nodes (complexity).  
Figure 7 indicates the comparison for experimental 
results and NNM predictions of BF complexity for 10 
variables. It can be inferred that the NNM result 
provides a very good approximation of the BF 
complexity. The same work has been repeated for 
BFs with 2 to 15 variables. Fig. 8, 9, and 10 illustrate 
experimental and predicted NNM results for variables 
8, 12 and 14 respectively. 
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Fig. 7. Complexity analysis of Experimental / NNMs 
for 10 variables 
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Fig. 8. Complexity analysis of Experimental / NNM s 
for 8 variables 
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Fig. 9. Complexity analysis of Experimental / NNM s 
for 12 variables 
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Fig.10. Complexity analysis of Experimental / NNMs 
for 14 variables 
                                                                                                          
5 Conclusion 
In this research work, we implemented a new way of 
modeling the complexity of BFs based on NN. An 
advantage of our model is that it is a single integrated 
model for different number of variables and NPT. 
The results from our experiments demonstrated that 
the NNMs were capable of providing useful clues 
about the complexity of the final circuit. Once NNMs 
had been developed, they could be used to conduct 
further experiments with different types of inputs, in 
a fraction of time what a circuit simulator would take.  
Future work will be mainly concentrated on having 
wider range of variables to verify the proposed 
method with real benchmark circuits. 
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