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Abstract: - In this paper we calculate the velocity field and distribution of stream function for ideal 
incompressible fluid, induced by a different system of vortex threads in a finite frustum of the cone. An 
original method was used to calculate the radial and axial components of the velocity vectors. Such a 
procedure allows us to calculate the velocity fields inside the cylinder depending on the arrangement, on the 
intensity and on the radius of circular vortex lines. In this paper we have developed original mathematical 
model for new type of ecologically clean and energetically effective device for producing electricity by the 
wind power. 
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1   Introduction 
In new technological applications it is important to 
use vortex distributions in area for obtaining large 
values of velocity. The effective use of vortex 
energy in production of strong velocity fields by 
different device is one of the modern areas of 
applications, developed during the last decade. Such 
processes are ecologically clean; there is no 
environment pollution. Although, on the other hand 
the aspect of energy is very important: the 
transformation process should be organized in such 
way that vortex energy is effectively transformed 
into heat or mechanical energy. In our previous 
papers [1] – [3] we have mathematically modeled 
the process how to transform the alternating 
electrical current into heat energy.  
The goal of this paper is to develop the 
mathematical models for new type of ecologically 
clean and energetically effective devices for 
producing electricity by the wind power [4]. Such 
type of devices firstly was developed by I. 
Rechenberg. Now the continuator of the work is one 
of authors J. Schatz. The devices of such type can be 
considered as the energy source of the new 
generation because of several reasons. Firstly, they 
are completely ecologically clean. Secondly, they 
are very compact (if their size is compared to their 
power). Thirdly, the idea of the structure of the 
devices is based on the processes in nature; in this 
case it is hurricane.    
 

 
 
2   Mathematical Notations and the 
General Formulation of the Problem  
Let the ideal incompressible fluid occupy a finite 
frustum of cone ( ) {( , , ) :r zε ϕΩ =% 0 ,r a zε< < −  
0 ,0 2 }z Z ϕ π< < < < , where the parameter ε  
fulfills the condition: 0 .Z aε≤ <  If 0ε = , the cone 
transforms to circular cylinder with the radius a . 
We will start with some geometrical descriptions of 
placement of the vortexes. We will consider the 
situation, when N discrete circular vortexes iL , 

where {( , ) : , }, 1,i i iL r z r a z z i N= = = = with 

intensity 
2

i
m
s

 
Γ  
 

and radii ( )ia m are placed in the 

cylinder. The system of circular vortexes creates the 
radial rv and axial zv components of the velocity 
field in ideal incompressible liquid. 
Similarly can be considered the system of N  

discrete spiral vortex threads ( 1,i N= ) 
{( , , ) : , , }iS r z r a t z a t t iϕ ε τ ϕ δ= = − = = + with 

parameters
2 ,

2
Z

N aM
πδ τ

π
= = . The argument ϕ  

fulfills the following enclosure: 
2 , 2 ( 1) ,M
N
πϕ π ∈ +  

parameter [0,2 ]t Mπ∈ , 
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where M is the number of circulation periods and 
τ is the rise (step) of the vortex threads. The system 
of vortex threads creates the radial ,rv axial zv and 
azimuthal vϕ components of the velocity field in 
ideal incompressible liquid. 
The vector potential A  will be determined from the 
equations of vortex motion of ideal incompressible 
fluid 

0,
.

div v
rot v

=
 = Ω

                                                          (1) 

in following form: 
A∆ = −Ω .                                                            (2) 

Here 
v rot A= ,                                                             (3) 
where ,v Ω  are the vectors of velocity and vortex 
fields and ∆  is the Laplace operator. 
It is well known that if we replace the velocity 
vector v  with the magnet field induction vector B  
and the vortex vector Ω  with the electrical current 
vector j  then the system of equations (1) is identical 
with steady-state Maxwell’s equations. It means that 
all our mathematical results could be applicable to 
some electromagnetic processes as it was done in 
our papers [1]-[3]. In spite of this now we will apply 
our mathematical investigations to see how the 
vortexes act to the distribution of velocity field of 
incompressible fluid. The aim of this investigation is 
to try to understand the process in devices of 
Hurricane Energy Transformer [4] type. 
 
3   The Description of the Problem in 
the Case of the Finite Cone 
Applying the Biot-Savart law [5],[6] we receive the 
following representation form for the vector 
potential created by the vortex thread i iW S=  or 

i iW L= : 

( )
4 ( )

i

i
i

iW

dlA P
R NPπ

Γ
= ∫ ,                                       (4) 

where dl is an element of the curve iW , 

( , , )P P x y z=  is the fixed point in the fluid, 

( , , ) iN N Wξ η ς= ∈  is the integration point,  

2 2 2

( )

( ) ( ) ( ) .
i iR NP R

x y zξ η ς

= =

− + − + −
                       (5) 

For the circular vortex i iW L=  in cylindrical 
coordinates we have: 

cos , sin , ix r y r z zϕ ϕ= = = .                         (6) 

For the spiral vortex i iW S=  we have expressions: 

* *( ) cos( ), ( )sin( ),a t t i a t t iξ δ η δ= + = +  

btς = .                                                                (7) 

Here *( ) , , [0, 2 ]a t a t b a t Mε τ π= − = ∈ .  
This gives following expressions for the components 
of vector potential: 

, , ,, ,
4 4 4

i i i

i i i
x i y i z i

i i iS S S

d d dA A A
R R R
ξ η ς

π π π
Γ Γ Γ

= = =∫ ∫ ∫ . 

For the spiral vortex we have from (5) and (7): 

*[ ( )sin( ) cos( )],d a t t i t iξ δ ε δ= − + + +  

*( ) cos( ) sin( ),d a t t i t iη δ ε δ= + − +  

,d bdtς =  

 iR =  
2 2 2

* *( ) 2 ( ) cos( ) ( )r a t a t r t i z btϕ δ= + − − − + −  

Therefore  
2

*
,

0

( ) sin( ) cos( )
4

M
i

x i
i

a t t i t iA dt
R

π δ ε δ
π
Γ + + +

= − ∫ , 

2
*

,
0

( ) cos( ) sin( )
4

M
i

y i
i

a t t i t iA dt
R

π δ ε δ
π
Γ + − +

= ∫ , 

2

,
04

M
i

z i
i

b dtA
R

π

π
Γ

= ∫ . 

In accordance with formulae (2) we have following 
expressions for the components of velocity field: 

( )

, ,
,

,
, ,

, ,
,

 ,

1 1 ,

.

i z i
r i

r i
z i i

r i z i
i

A A
v

z r
A

v rA
r r r

A A
v

z r

ϕ

ϕ

ϕ

ϕ

ϕ

∂ ∂
= − + ∂ ∂

 ∂∂
= − ∂ ∂

 ∂ ∂
= −

∂ ∂

                             (8)   

Further we have from (6): 

 
, , ,

, , ,

cos sin ,

sin cos .
r i x i y i

i x i y i

A A A

A A Aϕ

ϕ ϕ

ϕ ϕ

= +

= − +
   

It gives following expressions for last two 
components of vector potential: 

2
*

,
0

( ) sin( ( )) cos( ( ))
4

M
i

r i
i

a t t tA dt
R

π ψ ε ψ
π
Γ −

= ∫ , 

2005 WSEAS Int. Conf. on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT, Venice, Italy, November 2-4, 2005 (pp255-260)



2
*

,
0

( ) cos( ( )) sin( ( ))
4

M
i

i
i

a t t tA dt
R

π

ϕ
ψ ε ψ

π
Γ +

= ∫ . 

Here we have introduced short notation 
( )t t iψ ϕ δ= − − . For the partial derivatives of the 

distance iR we obtain following expressions: 

*

*

( ) cos( ( )) ,

,

( )sin( ( )) .

i

i

i

i

i

i

R r a t t
r R
R z bt
z R
R a t t

R

ψ

ψ
ϕ

∂ −
=

∂

∂ −
=

∂
∂

=
∂

 

For the components of the velocity field we have 
representations as follows: 

*

2

, *
0

3

cos( ( ))

( )sin( ( ))

[( )( ( )4

sin( ( ))) ] ,

M
i

r i

i

t

a t t

v z bt a t

dtt b
R

π
ψ

ψ

π

ε ψ

Γ= −

+ −

∫                (9) 

2

, * *
0

3

[ ( )( ( )4

cos( ( ))) sin( ( ))] ,

M
i

z i

i

v a t a t

dtr t r t
R

π

π

ψ ε ψ

Γ= −

−

∫                       (10) 

                                  
2

, *
0

* 3 .

[ ( ( )cos( ( )))4

( )( ( )sin( ( )) cos( ( )))]

M
i

i

i

v b r a t t

dtz bt a t t t
R

π

ϕ ψπ

ψ ε ψ

Γ= − −

− +

∫    (11) 

 
4   Solution of the Problem for the 
Finite Cylinder 
Further in this paper we will concentrate our 
attention to the case of the circular cylinder ( 0ε = ). 
It is easy to proof that for the cylinder with the 
radius a  all components of velocity are a even 

functions according to middle point 
2
Zz =  of the 

cylinder, i.e.: 

( , , ) ( , , )
2 2i i
Z Zv r z v r zϕ ϕ− = + .                       (12) 

The representations for the components of vector 
potential in case of cylinder take a simplified form: 

2

,
0

sin( )
4

M
i

x i
i

a t iA dt
R

π δ
π

Γ +
= − ∫ , 

2

,
0

cos( )
4

M
i

y i
i

a t iA dt
R

π δ
π

Γ +
= ∫ , 

2

,
04

M
i

z i
i

b dtA
R

π

π
Γ

= ∫ . 

Respectively simplifies the both components of the 
vector potential in cylindrical coordinates: 

2

,
0

,
sin( ( ))

4
M

i
r i

i

a tA dtR
π ψ

π
Γ= ∫  

2

,
0

cos( ( ))
4

M
i

i
i

a tA dt
R

π

ϕ
ψ

π
Γ

= ∫ . 

The components of the velocity field look now as 
follows: 

,
2

3
0

( , , ) 4

[( )cos( ( )) sin( ( ))] ,

i
r i

M

i

r z av

dtz bt t b t
R

π

ϕ π

ψ ψ

×
Γ=

− −∫

      (13) 

,
2

3
0

( , , ) 4

[ cos( ( ))] ,

i
z i

M

i

r z av

dta r t
R

π

ϕ π

ψ

×
Γ=

−∫

                                (14) 

2

,
0

3 .

( , , ) [ ( cos( ( ))4

( )sin( ( )]

M
i

i

i

r zv b r a t

dta z bt t
R

π

ϕ ϕ ψπ

ψ

Γ= −

− −

∫          (15)    

On the axis of the cylinder the second component 
(14) of velocity reduced to simple expression:  

22

, 3/ 22 2
0

(0, , )
4 ( )

M
i

z i
a dtv z

a z bt

π

ϕ
π

Γ
=

 + − 
∫ . 

This representation easy can be written in closed 
form: 

, 2 2 2 2
(0, )

2 ( )
i

z i
M z Z zv z
Z a z a Z z

 Γ −
= + 

 + + −  
.  

This function takes it’s maximal value in middle 
point of cylinder axis / 2z Z= [8]: 

, 2
(0, / 2)

2 1 ( /(2 ))
i

z i
Mv Z

a Z a
Γ

=
+

.                 (16) 

The minimal values of the z component of the 
velocity we obtain in two end points of cylinder axis 
[8]: 

, , 2
(0,0) (0, )

2 1 ( / )
i

z i z i
Mv v Z

a Z a
Γ

= =
+

.         (17) 

2005 WSEAS Int. Conf. on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT, Venice, Italy, November 2-4, 2005 (pp255-260)



We can calculate the integral averaged value of the 
axial velocity component: 

, ,
0

1 (0, )
Z

av i z iv v z dz
Z

= ∫ . 

This value is: 

, 2

2
2 1 1 ( / )
i

av i
Mv
a Z a

Γ
=

+ +
.                  (18) 

The whole solution can be written now as the sum of 
separate vortexes: 

,
1

,
1

,
1

,
1

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , ).

N

r r i
i

N

z z i
i

N

i
i

N

i
i

v r z v r z

v r z v r z

v r z v r z

A r z A r z

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

=

=

=

=

=

=

=

=

∑

∑

∑

∑

                           (19) 

In general case we calculated all needed integrals 
with the trapezoid formulas. 
In case of circular vortex we have following 
expressions instead of (7): 

cos , sin , .i i ia a zξ α η α ς= = =                        (20) 
Therefore 

, 0.z iA =                                                               (21) 

The circular vortex originate axially-symmetric 
conditions; at 0ϕ =  we have 

, 0.x iA =                                                                (22) 

It follows then that 

, , ( , )
4

i i
y i i i i

aA A A z r Iϕ π
Γ

= = = , 

where 
2

2 2 2
0

cos
( ) 2 cos

i

i i i

dI
z z a r a r

π α α
α

=
− + + −

∫ .         (23) 

We have (see, e.g. [6]): 
/ 2 2

2 2 2 2
0

(1 2sin )
( ) ( ) 1 sin

2 2 2( ) ( ) .

i

i i i

i i i
i ii

t dtI
z z r a k t

k K k E k
k kra

π −
= =

− + + −

  
− −  

  

∫
 

Here 
( ) / 2t α π= − , 

2 /i ik ar c= ,                                                    (24) 

2 2( ) ( )i i ic z z r a= − + + .                                   (25) 

Further ( )K k and ( )E k are the total elliptical 
integral of first, respectively second kind: 

/ 2

2 2
0

/ 2
2 2

0

( ) ,
1 sin

( ) 1 sin .

dtK k
k t

E k k tdt

π

π

=
−

= −

∫

∫
 

Therefore the azimuthal component of vector 
potential  iA  induced by the circular vortex iL  is: 

( , ) ( )
2

i i
i i

aA r z F k
rπ

Γ
= .                                   (26) 

Here 

2 2( ) ( ) ( ) .i i i i
i i

F k k K k E k
k k

  
= − −  

  
              (27) 

The two non-zero components of the velocity field 
for the circular vortex according the formulas (8) 
reduce to expressions: 

, ,i
r i

Av
z

∂
= −

∂
( ),

1
z i iv rA

r r
∂

=
∂

.                           (28) 

We have from formulas (24),(25) and (27): 
2 2 2

2 3 ,
( ) ( ),i i i i i i i

i i

k k z z k a z z a r
rz rc c

∂ − ∂ − + −=− =∂ ∂
 

[ ]2

1 1,
1i i i i i

dK E dEK E K
dk k k dk k

 
= − = − − 

 

and 
2 2 2

2 2 2
( )2 ( ) ( )

( ) ( )
i i

i i
i i i i

a r z zdF E k K kdk k a r z z
 
 
  

+ + −= −
− + −

. 

These expressions give finally: 

,

2 2 2

2 2

( , )
2

( )( ) ( ) ,
( ) ( )

i i
r i

i

i i
i i

i i

z zv r z
r c

a r z zE k K k
a r z z

π
Γ −

= ×

 + + −
− − + − 

               (29) 

,

2 2 2

2 2

( , )
2

( )( ) ( ) .
( ) ( )

i
z i

i

i i
i i

i i

v r z
c

a r z zK k E k
a r z z

π
Γ

= ×

 − − −
− − + − 

               (30) 

Both elliptical integrals can be calculated 
numerically with the accuracy to five decimal places 
[9] (see our paper [10] also) as follow: 
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2

2

1.3863 0.112 0.0725
(0.5 0.1213 0.0289 ) ln ,
K κ κ

κ κ κ

= + + −

+ +

%
 

2

2

1.0 0.463 0.1078
(0.2453 0.0412 ) ln .
E κ κ

κ κ κ

= + + −

+

%
 

Few examples: 

0 : 1.570800, 1.570796;
2

k K E K Eπ
= = = = = =% %

 
0.1: 1.574746, 1.574754,

1.566862, 1.566871;

k K K

E E

= = =

= =

%

%
 

0.9 : 2.280549, 2.280570,

1.171697, 1.171733.

k K K

E E

= ≡ =

= =

%

%
 

We have on the axis of the cylinder: 
2

, 3/ 22 2
(0, ) .

2 ( )
i i

z i

i i

av z
a z z

Γ
=

 + − 
  

This component of the velocity has the maximal 
value by ,i iz z a a= =  on the axis and it is as 
follows: 

 , (0, ) .
2

i
z i iv z

a
Γ

=   

In the middle point of the z axis we obtain the value 
(for ia a= ): 

, 3/ 2
2 2

(0, / 2) .
1 ( ) /

2

i
z i

i

v Z
ZD z a

Γ
=

 + −  

            

For the integral averaged value of the axial velocity 
component we have following formula: 

,

2 2

( ) / / .
1 (( ) / ) 1 ( / )

i
av i

i i

i i

av
DZ

Z z a z a
Z z a z a

Γ
= ×

 −
 +
 + − + 

             (31) 

From here we have in the middle point / 2iz Z= : 

, 2

1 .
1 ( / )

i
av iv

D Z D
Γ

=
+

 

The total velocity field of all the circular vortexes 
and the vector potential Aϕ  we have as the sum of : 

,
1

,
1

,
1

( , ) ( , ),

( , ) ( , ),

( , ) ( , ).

N

r r i
i
N

z z i
i

N

i
i

v r z v r z

v r z v r z

A r z A r zϕ ϕ

=

=

=

=

=

=

∑

∑

∑

    

The hydrodynamic stream function ( , )r zψ ψ= is 
given by relations: 

1 1,r zv v
r z r r

ψ ψ∂ ∂
= − =

∂ ∂
. 

Then we have from (28): 
( , ) ( , )r z rA r zϕψ = .                                            (32) 

Important attribute of the process is the amount Q  
of substance which flows through the cross section 

0 0[ ,0 ]z z r a= ≤ ≤  of the cylinder, which is given 
by the integral: 

02

0 0 0
0 0

( , ) ( , )
a

zQ a z d v r z rdr
π

ϕ= ∫ ∫ . 

It is very easy to calculate the quantity: 

0 0 0 0 0 0 0( , ) 2 ( , ) 2 ( , )Q a z a A a z a zϕπ πψ= = .     (33) 

Then the amount TQ of substance which flows 
trough the whole cylindrical domain is equal to: 

0 0 0
0 0

( ) ( , ) 2 ( , )
Z Z

TQ a Q a z dz a z dzπ ψ= =∫ ∫ .         (34) 

As the reader can see, the proposed method allows 
to calculate the velocity field for arbitrary number 
and location of circular vortexes or vortex threads in 
a finite cylinder. This approach is different from the 
usual methods, e.g., in book [11].  
 
 
5   Conclusion 
Velocity field of ideal incompressible fluid 
influenced by circular vortex field in a finite 
cylinder is investigated. The maximal value of the 
velocity induced by the spiral vortexes is in the 
middle of the cylinder. The behavior of circular 
vortexes in the ideal incompressible flow depends 
on the number, location and on the orientation of the 
vortexes. This approach can be generalized for the 
vortex threads on the surface of finite frustum of the  
cone. It will be investigated in separate paper, where 
the results of the calculations will also be given.     
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