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Abstract: − Background estimation and subtraction is a critical and time consuming step in 
moving object segmentation for video surveillance. Nonparametric kernel density estimation has 
been successfully used in modeling the background statistics, due to its capability to perform well 
without making any assumption about the form of the underlying distributions. To obtain real-
time performance of the nonparametric estimator, we recently proposed an algorithm based on 
mean shift mode-tracking and a rough histogram test to fast discard foreground pixels from exact 
evaluation. In the present work, an improvement of the new algorithm is proposed, leading to 
faster background change tracking capability and more accurate background estimation. 
  
Keywords ⎯ Background subtraction, nonparametric kernel density estimation, video 
surveillance. 
 

1   Introduction    
Video surveillance is a fast growing field with 
numerous applications including car and pedestrian 
traffic monitoring, human activity surveillance for 
unusual activity detection, people counting etc. [1], 
[2], [3]. Activity is usually associated with motion and 
motion is related to image change. However, image 
changes obtained from simple frame differencing are 
not able to accurately segment the interior of smooth 
regions, when they move. Since the cameras used in 
surveillance are typically stationary, a straightforward 
way to detect moving regions/objects is to compare 
each new frame with a reference frame, modeling in 
some optimal sense the scene background. By 
subtracting the background from the current frame in 
all regions where the current frame matches the 
reference frame, a binary segmentation of the 
foreground/background pixels can be obtained. 
Despite the extensive research done, background 
detection remains a challenging problem in 
applications with difficult circumstances, such as 
changing illumination, waving trees, water, video 
displays, rotating fans, moving shadows, inter-
reflections, camouflage high traffic etc.  

Background modeling is commonly carried out at 
pixel level. Each pixel is represented by a feature 
vector, such as intensity or color, disparity, depth etc. 

The background estimation process has to be done 
during activity in the scene and has to be updated to 
follow background changes occurring in time. Moving 
objects produce samples considerably deviating from 
the real background. Therefore, background 
estimation requires robust estimators [4]. A suitable 
way to model the static background is through a 
random vector with an associated probability density 
function (PDF). The estimated background at a pixel 
is then the feature vector maximizing the estimated 
PDF. In some cases, like trees waving in the 
background or a rotating fan, more than just one 
density mode may be needed for proper background 
modeling.  

The unknown probability density functions can be 
modeled parametrically, using known statistical 
distributions. A very popular approach is to fit the real 
data with per-pixel mixtures of Gaussians [5][6][7]. 
The strong point of the Gaussian mixture model is that 
it can work without having to store an important set of 
input data, as nonparametric methods do. Some 
known problems with this approach are: the need for 
good initializations, slow recovery from failures, 
difficult adaptation to fast illumination changes, 
dependence of the results on the true distribution law 
and the need to specify the number of Gaussians to be 
fitted. 
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Alternately, the density function modeling the 
background at each pixel can be obtained through 
nonparametric kernel density estimation methods [8]. 
They are known to be able to produce smooth, 
continuous, differentiable and accurate estimates, 
without having to assume any particular underlying 
distribution. The number of modes does not have to be 
known in advance and adaptation to new data is 
automatic. Nonparametric methods are less frequently 
used in visual surveillance applications than the 
parametric ones, because of the requirement to store a 
big amount of data samples for estimation and mainly 
because of their heavier computational load. Several 
methods have been proposed to reduce the 
computational burden of these methods. In [9], 
Girolami is using a reduced data set obtained by an 
optimized condensation algorithm. The Fast Gauss 
Transform, data clustering and clever data structures 
are used in [10],[11] to reduce the computational load 
to O(2N). In [12], we used a recursive implementation 
of the mean shift algorithm for very fast real-time 
nonparametric PDF mode tracking, with complexity 
O(N0). This work is an extension of [12], aiming to 
adapt the learning rate of the mode tracker to the 
speed of change of the background.   
 
 
2 Kernel based density estimation 
techniques for background modeling 
Given a sample of N d-dimensional data points, xi, 
drawn from a distribution with multivariate 
probability density function p(x), an estimate of this 
density at x can be written as [8]: 
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is the kernel function depending on a symmetric 
positive definite d×d matrix, called bandwidth matrix. 
The bandwidth matrix H may be fixed or may change 
with both the estimation point x (H=H(x), the so 
called balloon estimator) and with the sample point xi 
(H=H(xi), the so called sample-point estimator). 
Frequently H has a diagonal form or even the form 
H= h2I, assuming the same scale h for all dimensions, 
i.e. a single scale parameter and an isotropic 
estimator, Kh. A radially symmetric estimator can be 
generated starting from a 1D kernel function K1 as: 
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with α is a strictly pozitive constant chosen such that 
the kernel function integrates strictly to 1. Notice that 
K1() actually has a scalar argument. The profile of the 
radially symmetric kernel is defined as: 
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with ck,d a normalization constant. Common choices 
for the kernel profile are the rectangular shape, the 
triangular shape (for the Epanechnikov kernel) and the 
exponential shape (for the Gaussian or normal kernel): 
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An efficient way to find local maxima of the 
estimated PDF is through the mean shift algorithm 
[13]. Given the PDF estimated with the radially 
symmetric kernel K with profile k,  
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the mean shift vector is proportional to the normalized 
gradient of the estimated PDF: 
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The mean shift vector points into the direction of the 
maximum increase of the PDF, estimated with kernel 
K. Note that normalization is made with respect to the 
PDF estimated with kernel G. The profile of G is g, 
the negative of the first derivative of the profile k. 
Using the mean shift vector at a location y, a gradient 
ascent algorithm can be used to find the location of 
the maxima of the estimated PDF closest to the 
starting location. This can be simply done by iterating 
the equation 
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until convergence. The proof of the convergence can 
be found in [14]. More, in practice the convergence is 
very fast, typically only two or three iterations being 
needed. 

A straightforward application of kernel density 
estimators for background model estimation implies 
evaluating equation (1) at each of the N sample points 
of a frame buffer. This leads to a total number of N2 
operations per pixel. To obtain reliable estimates, N 
has to be fairly large, of the order of several hundreds, 
making the estimation prohibitive for real-time 
operation with today’s ordinary processing systems. 
In [12], we proposed a much faster solution, based on 
the idea of mode tracking. Note that incremental 
density estimation has been also adopted recently for 
fast PDF estimation using a condensation technique 
for object tracking [14], while our method is 
theoretically founded on the mean shift density mode 
estimator and is applied to background modeling.   
 
 
3  Adaptive learning rate mode-tracking 
background estimator 
 
 
3.1   Method definition 
We divide our background subtraction task into two 
stages. The first one is the initial background 
estimation, while the second one is background 
tracking. Initial background estimation is carried out 
when the system is started, according to equation (1). 
After doing so a mode-tracking approach is used for 
background model updating, based on recursive data 
processing and simple heuristics. We exploit the fact 
that we are only interested in accurately detecting the 
mode(s) of the PDF and their locations, not the whole 
PDF. For simplicity, we describe the case of a 
background modeled by a single feature vector, 
corresponding to the highest mode of the PDF.  

When a new frame is received, a new data point 
replaces the oldest data point, at each pixel in a frame 
buffer of length N. For the unchanged N – 1 data 
points, the new densities can be obtained from the old 

ones recursively, by simply adding the contributions 
of the new pixel and subtracting the contributions of 
the old, outgoing pixel:   
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This means only two operations per data point. For 
data points not belonging to the background 
distribution, the density is much lower than for the 
background. An accurate evaluation of the PDF at 
such points would be a waist of time, once they were 
identified. A cheap solution to identify such low 
density points and quickly discard them from exact 
evaluation is to keep a low resolution histogram for 
each spatial location of the image frame. Histogram 
updating can be done with only one increment and 
one decrement operation per new estimation frame. 
Low resolution is beneficial for both dealing with data 
sparseness and memory considerations. In our work, 
we used a 16×16×16 color histogram. If the newly 
entered data point is within the active domain of the 
kernel function centered at the currently estimated 
background, the density and the location of the 
background mode are updated in the next code line. 
Otherwise, the histogram based density estimate at the 
new data point is checked against a threshold. Only if 
the density threshold is passed, the new data point is 
submitted to accurate density evaluation by equation 
(1) and the result is compared to the current density 
maxima of the background for possible model 
replacement. Our experiments with several 
surveillance sequences have shown that such events 
occur very infrequently, typically when an object is 
permanently moved to or removed from the 
background. The background density is updated from 
equation (13), while the background model is updated 
using the following rule: 

newoldnew xbb αα +−= )1(  .   (14) 
This rule has been widely used for mean updating in 
the Gaussian mixture model parametric approach. Our 
theoretical motivation behind this option is related to 
the mean shift paradigm. Suppose the mean shift 
algorithm converged to bold and a new sample is 
acquired in the data buffer. Starting from bold the 
mean shift iterations using equation (12), and denoting 
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after the first iteration we get the result from equation 
(14), if we make 
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The second term at the denominator can be neglected, 
since the estimated probability density of the old 
background in the tracking mode is supposed to be 
high. The factor α can be thought of as a learning rate, 
decreasing with the distance of the new sample to the 
currently estimated background model and with the 
estimated probability density of the background 
model. In our implementation, we used a fixed value 
for the denominator in equation (16). This was mainly 
motivated not by faster processing reasons, but by the 
observation that variable denominator in equation (16) 
results in higher learning rate in regions with more 
activity, where the background is obscured longer, 
which is not desirable. 

A very stable background estimator needs a big 
amount of samples. In the case of the tracking 
estimator, a big N leads to a low learning rate, α. A 
low learning rate reduces the noise effects on the 
tracker. However, a lower learning rate also results in 
slower adaptation of the background model to real 
changes, like those produced by illumination changes. 
Apparently, the parameters N and α have to be 
selected as a compromise between two factors: low 
error variance in static conditions and low error 
variance in dynamic situations. The solution we 
propose in order to break this dilemma is based on the 
observation that the learning rate can changed 
adaptively to cope with both situations.  

A good adaptation method has to be able to 
discriminate between background changes produced 
by noise and real background changes. The basic idea 
of the improved tracking algorithm is that real 
background changes cause fast increasing of the 
cumulative difference dcum between the estimate b and 
the incoming data samples xnew, while noise effects on 
the cumulative difference tend to cancel. If we denote 
the background estimate at discrete time t with b(t), 
then the cumulative error vector at time t is 

∑
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By comparing the norm of the cumulative difference 
vector to a threshold dth, we can effectively detect 
situations when the mode-tracking estimator cannot 
keep up with the speed of change of the background. 
When we detect such an event, we simply update the 
background with the current sample by using learning 
rate α=1, set to zero the cumulative error signal and 
resume tracking with the basic learning rate. A 
pseudo-code description of the adaptive mode 
tracking background estimator is given in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 . Pseudo-code of the adaptive mode tracking background 

estimator. 
 
 
3.2 Comparisons with known adaptive 
background estimation solutions 
Adaptive learning rate has already been used for 
parametric background estimation by several authors. 
In [15], the learning rate is the product of two 
functions. The first one is a function of the local 
confidence, defined as exp(-d2/2σ2), where d is the 
difference between the current sample and the 
estimated mean. While this factor can be viewed as a 
generalization of the standard on-line version of the 
EM algorithm, its presence in our basic (called non-
adaptive) mode tracker is theoretically derived from 
the mean shift estimation paradigm. The second factor 
of the product used to compute the learning rate in 
[15] is a function of the global correlation, aiming to 
detect camera rotation, not considered here. In [6], 
variable learning rate is made a function of the scene 

if( Kh(xnew ⎯ b) != 0 ) 
 update( b and )(ˆ bp  ); 

dcum =  dcum + xnew ⎯ b; 
 if( ||dcum || > dth ) 
  b =: xnew; 
  dcum = 0; 
  end if 
else if( (Hist(xnew) > threshold ) 
 and ( )(ˆ)(ˆ new bx pp >  ) 
 b =: xnew; 
 end else if 
end if  
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activity at each pixel, detected by a different 
processing module, in order to slow down the learning 
process in regions with high activity,  when the real 
background is obscured by foreground objects. As a 
result, two people who stopped to have a short 
conversation would be incorporated in the background 
slower, as they have a slight motion, detected as an 
activity by the corresponding processing module. 
Conversely, a chair moved to the background would 
be static and therefore faster incorporated into the new 
background. The idea can be straightforwardly 
implemented in our nonparametric estimation too. 
However we use variable learning rate to enhance the 
tracking speed of our recursive estimator when the 
real background is visible but changed. Such an event 
is happening for example when the illumination 
changes gradually or by a moderate sized step. This 
happens frequently in outdoor scenes as a result of 
moving clouds, or in indoor scenes when an additional 
bulb is switched on or off or when a moving object is 
partially obscuring the light from some sources. The 
stated goal leads to a different learning rate adaptation 
method, complementing the parametric adaptive 
background estimation solutions discussed above. We 
include here the possibility of incorporating the basic 
idea of the adaptive mode tracking estimator from this 
work into parametric background estimators.  
 Adaptivity in nonparametric background 
estimation and subtraction methods is mostly related 
to finding the appropriate bandwidth or scale 
parameter for the estimator and an adequate threshold 
on the estimated PDF for segmenting the foreground 
objects. Although not described here (the interested 
reader is referred to our previous paper [12]), in 
practical implementation we used the adaptive scale 
based on median of absolute frame differences 
previously adopted by Elgamal [16]. More recently, 
adaptive nonparametric kernel density estimation for 
background subtraction is described in [17].      
 
 
3.3    Method evaluation 
The performances of the basic mode tracking detector 
have been evaluated in [12]. It has been shown that 
the mode tracking estimator has significantly lower 
error variance than the traditional kernel based 
estimator for a wide range of scales. To assess the 
performances of the adaptive learning rate mode-
tracking estimator, we carried out tests with both 
static and dynamic background. As theoretically 
expected, static tests revealed asymptotically identical 

results. Therefore, we next report only the results of 
tests with dynamic background.      

In our first experiment, we generated a 1D unit 
step edge of 400 samples. White Gaussian noise with 
10% standard deviation was added to obtain a noisy 
step edge. The signal was tracked with the mean shift 
mode-tracking estimator and with the adaptive 
learning rate mean shift mode-tracking estimator. 
Both estimators used truncated Gaussian kernels with 
scale parameter h = 2σ2 = 1 and α = 0.02 in update 
equation (16). The threshold on the accumulative 
difference was set at the level 3h = 3. The results of 
one such experiment are plotted in figure 2. Only a 
few samples are needed for the fast tracker to switch 
to fast tracking after the edge. Theoretically, there 
should be three samples, in the absence of noise.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Noisy step edge response of the mode-tracking estimator 
and of the adaptive mode tracking estimator. 

 
In the second experiment, we tested the standard 
deviation of the estimation error of the two mode-
tracking estimators as before, as a function of the 
amplitude of the noisy step edge. The signal was 
corrupted with Gaussian noise of standard deviation 
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10% and then 20%. The results are summarized in 
figure 3. As theoretically expected, the adaptive 
mode-tracking estimator outperforms the non-adaptive 
estimator when significant background changes occur. 
For very small changes or constant background and 
moderate noise level, the estimators have nearly the 
same (small) error level. The adaptive estimator has 
slightly higher error at very high noise level but only 
for static background.    
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Fig.3. Standard deviation of the estimation error of the mode 
tracking estimator (MT) and of the adaptive mode tracking (AMT) 

estimator as a function of the step edge amplitude,  
for noise standard deviations SD = 0.1 and 0.2. 

 
 
4   Conclusion 
In this work, we proposed an adaptive mode-tracking 
density estimator for background modeling in video 
surveillance. While benefiting from the advantages of 
nonparametric methods, the estimator has a very low 
computational complexity, as compared to other more 
general solutions for nonparametric density 
estimation, like the Fast Gauss Transform. The 
estimator is able to cope well with fast background 
change, due, for example, to sudden illumination 
change. This is obtained by switching the learning rate 
to the maximal value 1, when significant cumulative 
error test indicates systematic error build up. 
Experiments indicate very low estimation error in the 

presence of noise and dynamic backgrounds. In 
principle, the adaptive learning rate of the mode-
tracking background estimator can be computed in a 
more general way, to include adaptation criteria 
already proposed for other (parametric) adaptive 
estimators, for example detected activity computed 
from frame differences. Also, the adaptation method 
proposed here can be incorporated in a 
straightforward manner in parametric estimation 
methods. In this sense, the present work is 
complementing known adaptive background 
estimation solutions. More, we believe that the 
proposed solution may be useful in other applications 
using incremental density estimation as well and that 
the basic idea can be reshaped to fit specific needs.    
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