
Evolvable Hardware in Xilinx Spartan-3 FPGA

RUSTEM POPA, DOREL AIORDĂCHIOAIE, GABRIEL SÎRBU
Department of Electronics and Telecommunications

University “Dunărea de Jos” of Galaţi
Domnească Str., No. 111, 800201, Galaţi

ROMANIA
http://www.etc.ugal.ro

Abstract: - Evolvable Hardware is a hardware which modifies its own structure in order to adapt to the
environment in which it is embedded. This reconfigurable hardware is implemented on a programmable
circuit, whose architecture can be altered by downloading a binary bit string. These bits are adaptively
acquired by evolutionary algorithms. In this paper we have used an evolutionary algorithm to design some
combinational and sequential logic circuits. These designs have been implemented in a real Xilinx Spartan-3
FPGA and have been compared with other conventional designs of the same circuits. A better allocation of
resources in the targeted device has been observed in almost all evolutionary designs.

Key-Words: - Boolean functions, Genetic algorithms, Circuit modelling, Programmable integrated circuits,
Sequential machines, Simulation, State assignment.

1 Introduction
Evolvable Hardware (EHW) is a hardware built on a
software reconfigurable logic device, such as a
Programmable Logic Device (PLD) or a Field-
Programmable Gate Array (FPGA). In these circuits
the logic design is compiled into a binary bit string.
By changing the bits, arbitrary hardware structures
can be implemented instantly. The key idea is to
regard such a bit string as a chromosome of a
Genetic Algorithm (GA). Through genetic learning,
EHW finds the best bit string and reconfigures itself
according to rewards received from the
environment. In this way, the hardware structure is
adaptively searched by GA. This basic idea of EHW
was described in [4].
 The conventional design process is top-down and
begins with a precise specification. EHW is
applicable even when no hardware specification is
known before. Its implementation is determined
through a genetic learning in a bottom-up way. GA
is meant to mimic Darwinian evolution. A
population of candidates is maintained, and goes
through a series of generations. For each new
generation, some of the existing candidates survive,
while others are created by a type of reproduction
and mutation from a set of parents. EHW combine
knowledge of both GA and logic design to evolve
circuits.
 Research in EHW can be divided into intrinsic
evolution, which refers to an evolutionary process in
which each circuit is built in electronic hardware
and tested, and extrinsic evolution, that uses a model

of the hardware and evaluates it by simulation in
software.
 In this paper we have shown that evolutionary
design is favorably against the conventional design
in programmable devices. We have used only
extrinsic evolution, but the circuits generated in this
way have been tested in a real Xilinx Spartan-3
XC3S200FT256 FPGA by using the Xilinx ISE 6.1i
software. The remaining sections of the paper are
organised as follows: Section 2 describes in more
detail the genetic learning component of the EHW
and illustrates various implementations of some
digital circuits. All these implementations have been
analyzed and the experimental results are given in
Section 3. As a final point, Section 4 provides the
conclusions and future work.

2 Some Evolutionary Designs
This section consists of four subsections: the first
one talk about the genetic learning component of the
EHW, the second shows some implementations of a
boolean function, and the last two subsections
presents two various Finite State Machines (FSMs).

2.1 Genetic Learning in EHW
The genotype of an evolved structure on PLD basis
is given by the bits for fuse array and bits for logic
cells. However, this genotype representation has
inherent limitations, since the fuse array bits are
fully included in the genotype, even in the case that
only a few bits are effective. In [4], a variable length

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp66-71)

chromosome has been introduced, with the aim of
increasing the maximum size of the evolved circuit,
by using an undersized length of the chromosome.
In this way, the chromosome total length is reduced
and an efficient adaptive search is established.
 All the evolutionary algorithms used in this paper
are based on the fundamental structure of a GA. The
initial population of chromosomes (bit strings) is
generated randomly. All these potential solutions are
evaluated using a fitness function. In our case, for a
single boolean function, fitness is the ratio between
the number of the correct values of the function and
the number of all possible values (which is n2 , if
the boolean function has n input variables). A well-
designed circuit will be obtained only when the
value of fitness is 100%. A roughly value of the
fitness is unacceptable here.
 The next step is selection and reproduction. For
each individual, a number of copies are made,
proportional to its fitness, while keeping the
population size constant. The least fit individuals are
deleted. This is the survival of the fittest part of the
GA.
 The next step is crossover, where individuals are
chosen two at a time, as parents. They are converted
into two new individuals, called offsprings, by
exchanging parts of their structure. Thus, each
offspring inherits a combination of features from
both parents. We have obtained the best results with
one point crossover, with a probability of 80%. This
operator may be used more times on different
selected pairs of chromosomes in a generation.
 The next step is mutation. A small change is
made to each resultant offspring, with a small
probability. After mutation is performed on an
individual, it no longer has just the combination of
features inherited from its two parents, but also
incorporates the additional change caused by
mutation. This ensures that the algorithm can
explore new features that may not yet be in the
population. It makes the entire search space
reachable despite the finite population size. The
whole process is repeated for several generations,
and, if the best chromosome in population will have
the fitness of 100%, then this bit string represents a
good solution for our function.
 The first successful evolved circuits have been
the digital combinational logic circuits. The
evolution of sequential logic circuits is considerably
less mature. The complexity of circuit connections
and encoding chromosomes to evolve the sequential
logic circuit may be one of the reasons that not
much work has been done in this area, according
with [1].

2.2 A Boolean Function
We have considered a boolean function represented
in a minimal disjunctive form by using a Karnaugh
map:

3231321 xxxxxxxf ⋅+⋅+⋅⋅= (1)

This representation has a cost of 7 gates and 13
inputs, including inverters. By applying some
switching-algebra theorems our function may be
written in the next form:

213 xxxf ⋅⊕= (2)

Now, the cost of implementation is only of 3 gates
and 5 inputs. Unfortunately, there is no algorithm to
find this convenient form of the function, only the
heuristics and experience of the human designer.
 Then we have tried to find another representation
of this function by evolutionary design. We have
used the idea given in [3]. Each combinational
circuit is represented as a rectangular array of logic
gates. Each of these gates has two inputs and one
output, and the logic operator may be selected from
a list. At the beginning of the search, all the gates
from the matrix are disposable to implement a
functional circuit. Once a functional solution
appears, then the fitness function is modified such
that any valid designs produced are rewarded for
each gate which is replaced by a simple wire. The
algorithm tries to find the circuit with the maximum
number of gates replaced by wires that performs the
function required.
 The chromosome defines the connection in the
network between the primary inputs and primary
outputs. We have used a network of 4 gates, a
population of 32 chromosomes, 10 of them beeing
changed each generation, a single point 100%
crossover and 5% rate mutation.
 A feasible solution has been obtained in less than
100 generations. This function may be written as:

3121 xxxxf ⊕+⊕= (3)

We can see that, in this case, the cost is of 3
inverting gates and 6 inputs, and this solution has
the minimum delay time between any input and the
output of the circuit, in a gate level implementation.
 Finally, the most extended representation of this
function is the disjunctive canonical form, with a
total cost of 9 gates and 23 inputs. We have
implemented all these four different equations of the
function in Xilinx Spartan-3 XC3S200FT256 FPGA
and the results are compared in Section 3.

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp66-71)

1 0

1

S/Y
X

S0: 000
S1: 010
S2: 001
S3: 100
S4: 110
S5: 101

S0/0

S1/0

S2/0

S3/1

S4/1

S5/1

1

0

0

1 0

1

0

0

1

Fig.1 A sequence detector represented as state
transition graph and GA state assignment.

2.3 A Sequence Detector
The FSM represented in the figure 1 is a sequence
detector with one-input, one-output and 6-internal
states. When the input sequence 011 occurs, the
output becomes 1 and remains on this logic value
until sequence 011 occur again. In this case, the
output returns to 0, and maintain this value, until a
new sequence 011 appears. This circuit has been
described in [1].
 Firstly a GA has been used to find optimal state
assignment. An example of state assignment
generated in this way is shown in the figure 1. The
chromosome represents the FSM as a list of states.
The goal of the GA is to extract the optimum state
assignment, which requires the least number of logic
gates. A more detailed description of this problem is
presented in [1].
 Then, the extrinsic EHW has been used to find
the functional design of combinational parts of the
sequence detector. The equations of the evolved
optimal combinational circuit, represented in the
figure 2, are the following ([1], [8]):

022022 QQxQxQQD ⋅⋅+⋅+⋅= (4)

xD =1 (5)

10 QxD ⋅= (6)

2Qy = (7)

 A second evolved solution has been obtained
with another state assignment: S0 – 000, S1 – 001,
S2 – 011, S3 – 111, S4 – 110 and S5 – 100. The
equations of the combinational circuit are:

D Q

Q

D Q

Q

D Q

Q

1

2

0
CLK

X

Y

Fig.2 Evolved optimal circuit solution of the
sequence detector (equations 4-7).

122 QxQxD ⋅+⋅= (8)

021 QxQxD ⋅+⋅= (9)

010 QxQxD ⋅+⋅= (10)

0Qy = (11)

 A bad state assignment may conduct to much
more complex equations (if S0 – 000, S1 – 001, S2 –
010, S3 – 011, S4 – 100 and S5 – 101), then:

010222 QQxQQQxD ⋅⋅+⋅+⋅= (12)

0211 QQxQxD ⋅⋅+⋅= (13)

12020110 QQxQQxQQQxD ⋅⋅+⋅⋅+⋅+⋅= (14)

012 QQQy ⋅+= (15)

 These latest equations have been obtained by
manual design, by using Karnaugh maps. All these
three solutions have been implemented in the above
mentioned FPGA circuit and the results are
discussed in Section 3.

2.4 A Computer Interface
The FSM represented in the figure 3 is a computer
interface for serial communication between two
computers. A transition from one state to another
depends from only one of the 4 inputs 4,1, =ixi .
The circuit has 4 outputs, each of them beeing in 1
logic only in a single state. The FSM has 6 states
and has been presented in [5].
 With the state assignment given in the figure 3,
the conventional design of this circuit gives the
following equations for excitation functions:

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp66-71)

S

S0: 000
S1: 001
S2: 010
S3: 011
S4: 100
S5: 110

S0

S1

S2

S3

S4

S5

Yi

Xi or Xi

i = 1,2,3,4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X1

X2X3

X4

X4

Fig.3 A computer interface described as state
transition graph and manual state assignment.

120132 QQQQxD ⋅+⋅⋅= (16)

01240121 QQQxQQxD ⋅+⋅+⋅⋅= (17)

010120210 QQQQxQQxD ⋅+⋅⋅+⋅⋅= (18)

For the output functions, the equations are:

011 QQy ⋅= (19)

0122 QQQy ⋅⋅= (20)

123 QQy ⋅= (21)

124 QQy ⋅= (22)

 Evolutionary design of this circuit was done in a
different way than in previous subsection. Each of
these boolean functions has a maximum number of 5
inputs and a maximum number of 4 minterms. If we
want to implement these functions in a PLD
structure (an AND array and logic cells configurable
as OR gate), then the number of fuse array links is
2 5 4 40⋅ ⋅ = , and we may to consider this number as
the total length of the chromosome.
 Our GA is a standard one, with the population
size of 30 chromosomes. One point crossover is
executed with a probability of 80% and the mutation
rate is 2%. Six worse chromosomes are replaced
each generation. The stop criterion is the number of
generations.
 Our 100% fitness criterion was a feasible
solution in a CPLD structure, and not the
minimization of the number of gates. The complete
cost of the conventional design is consisted of 15
gates and 37 inputs, and for genetic design, 30 gates
and 102 inputs.

Parallel port connector

Xilinx
XC3S200
Spartan-3

FPGA

Clock

Expansion
Connector

Push
buttons
4

Slide
switches
8

LEDs8

4 Character
7-Segment LED

XCF02S 2Mbit
Config. PROM

2 x 256K x 16
10 ns SRAM

VGA Port

PS/2 Port

RS-232
Serial Port

Program Button
Config. LED

Fig.4 Spartan-3 Starter Kit Board connections

3 Experimental Results
All the circuits designed in previous section have
been implemented in a real FPGA circuit. This
circuit is Xilinx Spartan-3 XC3S200 FPGA, in a
256-ball thin Ball Grid Array package, which
includes 4320 logic cell equivalents, twelve 18K-bit
block RAMs, hardware multipliers, clock managers
and up to 173 user-defined I/O signals.
 This FPGA circuit is mounted on a Spartan-3
Starter Kit Development Board, which contains, as
we can see in the figure 4, 2Mbit in-system
programmable configuration Flash PROM, 1M-byte
of Fast Asynchronous SRAM, 8-color VGA display
port, 9-pin RS-232 Serial Port, a PS/2 port, slide
switches, buttons and LEDs. The board is in-system
programmable through JTAG IEEE 1149.1
Interface, connected to PC parallel port.
 The programming circuit simply connects the
parallel port pins driven by the Xilinx CAD tools
directly to the FPGA programming pins. The
software we have used is Xilinx Integrated Software
Environment (ISE) 6.1i, a complete CAD
environment for implementation of complex digital
circuits. We have generated the source file of the
new project (schematic diagram or VHDL) and we
have obtained all the fitting information about our
design. The bit file may be downloaded in the FPGA
by using Xilinx’s iMPACT programmer tool.

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp66-71)

Table 1 Implementation of a boolean function

 Function Results after placing
 and routing eq.1 eq.2 eq.3 CS
maximum path delay(ns) 10,47 10,02 10,25 10,59
number of 4 in. LUTs 1 1 1 1
number of bonded IOBs 4 4 4 4
number of slices 1 1 1 1
total equivalent gates 6 6 6 6
additional JTAG gates 192 192 192 192
peak memory usage (M) 65 65 65 65
total time to PAR (sec) 2 2 2 2

 The design step is called “fitting” to “fit” the
design to the target device. In CPLD, a device with a
fixed architecture, the software needs to pick the
gates and interconnect paths that match the circuit.
This is usually a fast process, and we have noticed in
[5] that all the results are the same. We can assume
that our software finds an optimal way in connecting
the hardware resources of the circuit, even if the
function is not done in a minimal form.
 The term “fitting” has historically been used to
describe the implementation process for CPLD
devices and “place and route” has been used for
FPGAs. Implementation is followed by device
configuration, where a bitstream is generated from
the physical place and route, and downloaded into
the target programmable device.
 For FPGAs the implementation process
undertakes 4 steps: “translate”, that interprets the
design and runs a Design Rule Check (DRC), “map”
that calculates and allocates resources in the targeted
device, “place and route” that places the logic blocks
in a logical position and utilises the routing
resources, and “configure” that creates a
programming bitstream.
 Results after “place and routing” step for our
boolean function, are given in the Table 1. We have
used the first 3 equations given in subsection 2.2 and
the Canonical Sum (CS) of the minterms ([8]).
 The program has used only 1 four-input Look-Up
Table (LUT) from the total number of 3840. A LUT
is in essence a piece of SRAM. The inputs to a LUT
give the address where the desired value is stored.
For a boolean function, a LUT can be made by
storing the correct outputs in the slots to which the
inputs point. Current logic blocks are based on
LUTs in order to minimize delay and avoid wasting
space. LUTs may have any number of inputs,
leading to logic blocks of anywhere from medium to
very coarse granularity. In [6] it was demonstrated
that 4 inputs LUTs are indeed best for optimizing
both speed and area of FPGA. This 4 inputs LUTs
remain the industry standard for FPGAs, although in
.

Table 2 Implementation of a sequence detector

 Sequence Detector Results after placing
 and routing eq.4-

 7
eq.8-
 11

eq.12-
 15

minimum clock period(ns) 4,630 3,618 5,844
number of 4 in. LUTs 2 3 4
number of bonded IOBs 2 3 3
number of slices 2 2 2
number of slice flip-flops 3 3 3
number of GCLKs 1 1 1
total equivalent gates 39 45 51
additional JTAG gates 144 144 144
peak memory usage (M) 65 65 65
total time to PAR (sec) 2 2 2

Table 3 Implementation of a computer interface

 Computer InterfaceResults after placing
 and routing eq.16-22 GA
minimum clock period(ns) 5,078 6,470
number of 4 in. LUTs 9 11
number of bonded IOBs 9 9
number of slices 3 3
number of slice flip-flops 3 3
number of GCLKs 1 1
total equivalent gates 81 93
additional JTAG gates 432 432
peak memory usage (M) 65 65
total time to PAR (sec) 2 2

[2] has been discovered that sometimes grouping
several connected 4 inputs LUTs into a single logic
block minimizes delays and area.
 Another one difficult problem is the optimizing
the routing of wires between logic blocks. The
greatest area of an FPGA is used for routing, and it
has the potential to cause a great deal of delay. We
can see in the table 1 that CS representation of the
function has the maximum combinational path delay
(about 10,59 ns), the Karnaugh Map has a delay of
10,47 ns, and the evolved function has a delay of
10,25 ns. The minimum delay is obtained for
equation 2, but we must remember that this
representation has been generated in an heuristic
way, there is no algorithm for this solution. The best
known algorithm remains the evolutionary one,
presented in subsection 2.2.
 In sequential circuits, the optimal state
assignment is crucial. The best implementation of
the sequence detector is given by the equations
(4-7), but the minimum clock period is greater than
in second implementation (a longer combinational
path delay). In our circuit, the total number of LUTs
is 3840, the total number of slice flip-flops is also
3840, the total number of slices is 1920, the total

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp66-71)

number of bonded IOBs is 173 and the total number
of GCLKs is 8. Comparable results have been get
with this circuit in CPLD implementation ([5]). It’s
true that the main differences in the complexity of
these three circuits are given by the state
assignment. In the best solution, the state assignment
has been evolved with a GA ([1]).
 If we are looking now in the table 3, we can see,
for the first time, that an evolutionary algorithm
(GA) is worse than a conventional one. We must
remember again that in this case, our fitness
criterion was a feasible solution in a CPLD
structure, and not the minimization of resources in
FPGA. As we can see, this evolutionary solution is
bad for a FPGA implementation, but was very good
for a CPLD one. We have shown in [5] that the
implementation based on equations (16-22) has used
7/64 macrocells, 11/224 product terms, and 7/160
function block inputs from the CPLD circuit
XCR3064XL, while the GA implementation, which
a significant greater cost in resources, has used only
7/64 macrocells, 10/224 product terms, and 7/160
function block inputs. Amazing was the fact that our
GA have supplied a better solution than the one
given by the minimization tool used for this purpose
by the CAD software.

4 Conclusions
In this paper we have compared two different
paradigms in digital design: the conventional design
and the evolutionary design. Our goal was to
optimize the digital circuit and to implement it with
minimum resources in a FPGA.
 We have shown that pure combinational circuits
are implemented almost optimal, even if the boolean
functions are faraway of their minimal form, that is
software finds the optimal way in connecting the
hardware resources of the circuit. Even in this case,
an evolutionary algorithm may offer a less
maximum combinational path delay and may be
considered.
 Sequential circuits are more sensitive, because of
the state assignment, but evolutionary design
assures a better fitting of circuit resources in all
cases that has been investigated. The goal of the
fitness must be the minimum resources in FPGA,
and the state assignment must be evolved with a
GA.
 Future research must be done in this area. Firstly
it is important to find a better representation of the
circuit in chromosomes, because complex functions
need a great number of architecture bits, which
directly influences the GA search space. EHW

successfully succeeds only when fitness reaches
100% and in huge search spaces this condition may
be not always possible.
 FPGAs are reconfigurable circuits and they may
be used in intrinsic EHW. Future research must be
done in this area. First implementation of an
intrinsic EHW in FPGA has been described in [7].

Acknowledgment:
The authors would like to thank the Xilinx, Inc. for
their academic donation (ISE 6.1i software and
Spartan-3 System Board – 200K) and the Romanian
National University Research Council for supporting
part of the work under the research grant 1350.

References:
[1] Ali, B., A.E.A. Almaini and T. Kalganova,

Evolutionary Algorithms and Their Use in the
Design of Sequential Logic Circuits, Genetic
Programming and Evolvable Machines, Vol.5,
No.1, 2004, pp. 11-29.

[2] Chow, P., Seo S.O., Rose J., Chung K., Paez
Monzon G. and Rahardja I., The Design of an
SRAM-Based Field-Programmable Gate Array.
Part I: Architecture, IEEE Transactions on VLSI
Systems, Vol.7, No.2, 1999, pp. 191-197.

[3] Coello, C.C., A.D. Christiansen and A.H.
Aguirre, Use of Evolutionary Techniques to
Automate the Design of Combinational Circuits,
International Journal of Smart Engineering
System Design, Vol.4, 2000, pp. 299-314.

[4] Iba, H., M. Iwata and T. Higuchi, Machine
Learning Approach to Gate-Level Evolvable
Hardware, First International Conference on
Evolvable Systems, ICES’96, Tsukuba, Japan,
October 1996, pp. 327-343.

[5] Popa, R., Evolvable Hardware in Xilinx XCR
3064 CPLD, IFAC Workshop on Programmable
Devices and Systems, PDS 2004, Cracow,
Poland, 18-19 November, 2004, pp. 232-237.

[6] Rose, J., A. El Gamal and A. Sangiovanni-
Vincentelli, Architecture of Field-Programmable
Gate Arrays, Proceedings of the IEEE, Vol.81,
No.7, 1993, pp. 1013-1029.

[7] Thompson, A., An Evolved Circuit, Intrinsic in
Silicon, Entwined with Physics, First
International Conference on Evolvable Systems,
ICES’96, Tsukuba, Japan, October 1996, pp.
390-405.

[8] Wakerly, J., Digital Design: Principles and
Practices, Third Edition. Prentice Hall, Inc.,
New-Jersey, 2000

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp66-71)

