
Evolvable Hardware in Xilinx Spartan-3 FPGA  
 

RUSTEM POPA, DOREL AIORDĂCHIOAIE, GABRIEL SÎRBU  
Department of Electronics and Telecommunications 

University “Dunărea de Jos” of Galaţi 
Domnească Str., No. 111, 800201, Galaţi 

ROMANIA 
http://www.etc.ugal.ro  

 
 

Abstract: - Evolvable Hardware is a hardware which modifies its own structure in order to adapt to the 
environment in which it is embedded. This reconfigurable hardware is implemented on a programmable 
circuit, whose architecture can be altered by downloading a binary bit string. These bits are adaptively 
acquired by evolutionary algorithms. In this paper we have used an evolutionary algorithm to design some 
combinational and sequential logic circuits. These designs have been implemented in a real Xilinx Spartan-3 
FPGA and have been compared with other conventional designs of the same circuits. A better allocation of 
resources in the targeted device has been observed in almost all evolutionary designs.  
 
Key-Words: - Boolean functions, Genetic algorithms, Circuit modelling, Programmable integrated circuits, 
Sequential machines, Simulation, State assignment. 

 
1   Introduction 
Evolvable Hardware (EHW) is a hardware built on a 
software reconfigurable logic device, such as a 
Programmable Logic Device (PLD) or a Field-
Programmable Gate Array (FPGA). In these circuits 
the logic design is compiled into a binary bit string. 
By changing the bits, arbitrary hardware structures 
can be implemented instantly. The key idea is to 
regard such a bit string as a chromosome of a 
Genetic Algorithm (GA). Through genetic learning, 
EHW finds the best bit string and reconfigures itself 
according to rewards received from the 
environment. In this way, the hardware structure is 
adaptively searched by GA. This basic idea of EHW 
was described in [4].  
     The conventional design process is top-down and 
begins with a precise specification. EHW is 
applicable even when no hardware specification is 
known before. Its implementation is determined 
through a genetic learning in a bottom-up way. GA 
is meant to mimic Darwinian evolution. A 
population of candidates is maintained, and goes 
through a series of generations. For each new 
generation, some of the existing candidates survive, 
while others are created by a type of reproduction 
and mutation from a set of parents. EHW combine 
knowledge of both GA and logic design to evolve 
circuits.  
     Research in EHW can be divided into intrinsic 
evolution, which refers to an evolutionary process in 
which each circuit is built in electronic hardware 
and tested, and extrinsic evolution, that uses a model 

of the hardware and evaluates it by simulation in 
software. 
     In this paper we have shown that evolutionary 
design is favorably against the conventional design 
in programmable devices. We have used only 
extrinsic evolution, but the circuits generated in this 
way have been tested in a real Xilinx Spartan-3 
XC3S200FT256 FPGA by using the Xilinx ISE 6.1i 
software. The remaining sections of the paper are 
organised as follows: Section 2 describes in more 
detail the genetic learning component of the EHW 
and illustrates various implementations of some 
digital circuits. All these implementations have been 
analyzed and the experimental results are given in 
Section 3. As a final point, Section 4 provides the 
conclusions and future work.  
 
 
2   Some Evolutionary Designs 
This section consists of four subsections: the first 
one talk about the genetic learning component of the 
EHW, the second shows some implementations of a 
boolean function, and the last two subsections 
presents two various Finite State Machines (FSMs). 
 
2.1 Genetic Learning in EHW 
The genotype of an evolved structure on PLD basis 
is given by the bits for fuse array and bits for logic 
cells. However, this genotype representation has 
inherent limitations, since the fuse array bits are 
fully included in the genotype, even in the case that 
only a few bits are effective. In [4], a variable length 
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chromosome has been introduced, with the aim of 
increasing the maximum size of the evolved circuit, 
by using an undersized length of the chromosome. 
In this way, the chromosome total length is reduced 
and an efficient adaptive search is established. 
     All the evolutionary algorithms used in this paper 
are based on the fundamental structure of a GA. The 
initial population of chromosomes (bit strings) is 
generated randomly. All these potential solutions are 
evaluated using a fitness function. In our case, for a 
single boolean function, fitness is the ratio between 
the number of the correct values of the function and 
the number of all possible values (which is n2 , if 
the boolean function has n input variables). A well-
designed circuit will be obtained only when the 
value of fitness is 100%. A roughly value of the 
fitness is unacceptable here.    
     The next step is selection and reproduction. For 
each individual, a number of copies are made, 
proportional to its fitness, while keeping the 
population size constant. The least fit individuals are 
deleted. This is the survival of the fittest part of the 
GA.  
     The next step is crossover, where individuals are 
chosen two at a time, as parents. They are converted 
into two new individuals, called offsprings, by 
exchanging parts of their structure. Thus, each 
offspring inherits a combination of features from 
both parents. We have obtained the best results with 
one point crossover, with a probability of 80%. This 
operator may be used more times on different 
selected pairs of chromosomes in a generation.  
     The next step is mutation. A small change is 
made to each resultant offspring, with a small 
probability. After mutation is performed on an 
individual, it no longer has just the combination of 
features inherited from its two parents, but also 
incorporates the additional change caused by 
mutation. This ensures that the algorithm can 
explore new features that may not yet be in the 
population. It makes the entire search space 
reachable despite the finite population size. The 
whole process is repeated for several generations, 
and, if the best chromosome in population will have 
the fitness of 100%, then this bit string represents a 
good solution for our function.  
     The first successful evolved circuits have been 
the digital combinational logic circuits. The 
evolution of sequential logic circuits is considerably 
less mature. The complexity of circuit connections 
and encoding chromosomes to evolve the sequential 
logic circuit may be one of the reasons that not 
much work has been done in this area, according 
with [1].  

2.2 A Boolean Function 
We have considered a boolean function represented 
in a minimal disjunctive form by using a Karnaugh 
map: 
 

3231321 xxxxxxxf ⋅+⋅+⋅⋅=          (1) 
 
This representation has a cost of 7 gates and 13 
inputs, including inverters. By applying some 
switching-algebra theorems our function may be 
written in the next form: 
 

213 xxxf ⋅⊕=                        (2) 
 
Now, the cost of implementation is only of 3 gates 
and 5 inputs. Unfortunately, there is no algorithm to 
find this convenient form of the function, only the 
heuristics and experience of the human designer.  
     Then we have tried to find another representation 
of this function by evolutionary design. We have 
used the idea given in [3]. Each combinational 
circuit is represented as a rectangular array of logic 
gates. Each of these gates has two inputs and one 
output, and the logic operator may be selected from 
a list. At the beginning of the search, all the gates 
from the matrix are disposable to implement a 
functional circuit. Once a functional solution 
appears, then the fitness function is modified such 
that any valid designs produced are rewarded for 
each gate which is replaced by a simple wire. The 
algorithm tries to find the circuit with the maximum 
number of gates replaced by wires that performs the 
function required. 
     The chromosome defines the connection in the 
network between the primary inputs and primary 
outputs. We have used a network of 4 gates, a 
population of 32 chromosomes, 10 of them beeing 
changed each generation, a single point 100% 
crossover and 5% rate mutation.  
     A feasible solution has been obtained in less than 
100 generations. This function may be written as:  

 

3121 xxxxf ⊕+⊕=                    (3) 
 

We can see that, in this case, the cost is of 3 
inverting gates and 6 inputs, and this solution has 
the minimum delay time between any input and the 
output of the circuit, in a gate level implementation.  
     Finally, the most extended representation of this 
function is the disjunctive canonical form, with a 
total cost of 9 gates and 23 inputs. We have 
implemented all these four different equations of the 
function in Xilinx Spartan-3 XC3S200FT256 FPGA 
and the results are compared in Section 3. 
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Fig.1  A sequence detector represented as state 
transition graph and GA state assignment.  

 
2.3 A Sequence Detector 
The FSM represented in the figure 1 is a sequence 
detector with one-input, one-output and 6-internal 
states. When the input sequence 011 occurs, the 
output becomes 1 and remains on this logic value 
until sequence 011 occur again. In this case, the 
output returns to 0, and maintain this value, until a 
new sequence 011 appears.  This circuit has been 
described in [1]. 
     Firstly a GA has been used to find optimal state 
assignment. An example of state assignment 
generated in this way is shown in the figure 1. The 
chromosome represents the FSM as a list of states. 
The goal of the GA is to extract the optimum state 
assignment, which requires the least number of logic 
gates. A more detailed description of this problem is 
presented in [1].  
     Then, the extrinsic EHW has been used to find 
the functional design of combinational parts of the 
sequence detector. The equations of the evolved 
optimal combinational circuit, represented in the 
figure 2, are the following ([1], [8]): 

 

022022 QQxQxQQD ⋅⋅+⋅+⋅=              (4) 

xD =1                                     (5) 

10 QxD ⋅=                                  (6) 

2Qy =                                    (7) 
 
     A second evolved solution has been obtained 
with another state assignment: S0 – 000, S1 – 001, 
S2 – 011, S3 – 111, S4 – 110 and S5 – 100. The 
equations of the combinational circuit are: 
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Fig.2  Evolved optimal circuit solution of the 
sequence detector (equations 4-7). 

 
122 QxQxD ⋅+⋅=                       (8) 

021 QxQxD ⋅+⋅=                       (9) 

010 QxQxD ⋅+⋅=                     (10) 

0Qy =                               (11) 
 

     A bad state assignment may conduct to much 
more complex equations (if S0 – 000, S1 – 001, S2 – 
010, S3 – 011, S4 – 100 and S5 – 101), then: 
 

010222 QQxQQQxD ⋅⋅+⋅+⋅=           (12) 

0211 QQxQxD ⋅⋅+⋅=                    (13) 

12020110 QQxQQxQQQxD ⋅⋅+⋅⋅+⋅+⋅=   (14) 

012 QQQy ⋅+=                           (15) 
 

     These latest equations have been obtained by 
manual design, by using Karnaugh maps. All these 
three solutions have been implemented in the above 
mentioned FPGA circuit and the results are 
discussed in Section 3. 
 
2.4 A Computer Interface 
The FSM represented in the figure 3 is a computer 
interface for serial communication between two 
computers. A transition from one state to another 
depends  from only one of the 4 inputs 4,1, =ixi . 
The circuit has 4 outputs, each of them beeing in 1 
logic only in a single state. The FSM has 6 states 
and has been presented in [5]. 
     With the state assignment given in the figure 3, 
the conventional design of this circuit gives the 
following equations for excitation functions: 
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Fig.3  A computer interface described as state 
transition graph and manual state assignment. 

 
120132 QQQQxD ⋅+⋅⋅=                 (16) 

01240121 QQQxQQxD ⋅+⋅+⋅⋅=          (17) 

010120210 QQQQxQQxD ⋅+⋅⋅+⋅⋅=         (18) 
 

For the output functions, the equations are: 
 

011 QQy ⋅=                            (19) 

0122 QQQy ⋅⋅=                        (20) 

123 QQy ⋅=                            (21) 

124 QQy ⋅=                            (22) 
 

     Evolutionary design of this circuit was done in a  
different way than in previous subsection. Each of 
these boolean functions has a maximum number of 5 
inputs and a maximum number of 4 minterms. If we 
want to implement these functions in a PLD 
structure (an AND array and logic cells configurable 
as OR gate), then the number of fuse array links is 
2 5 4 40⋅ ⋅ = , and we may to consider this number as 
the total length of the chromosome.  
     Our GA is a standard one, with the population 
size of 30 chromosomes. One point crossover is 
executed with a probability of 80% and the mutation 
rate is 2%. Six worse chromosomes are replaced 
each generation. The stop criterion is the number of 
generations. 
     Our 100% fitness criterion was a feasible 
solution in a CPLD structure, and not the 
minimization of the number of gates. The complete 
cost of the conventional design is consisted of  15 
gates and 37 inputs, and for genetic design, 30 gates 
and 102 inputs. 
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Fig.4  Spartan-3 Starter Kit Board connections  
 
3   Experimental Results 
All the circuits designed in previous section have 
been implemented in a real FPGA circuit. This 
circuit is Xilinx Spartan-3 XC3S200 FPGA, in a 
256-ball thin Ball Grid Array package, which 
includes 4320 logic cell equivalents, twelve 18K-bit 
block RAMs, hardware multipliers, clock managers 
and up to 173 user-defined I/O signals. 
     This FPGA circuit is mounted on a Spartan-3 
Starter Kit Development Board, which contains, as 
we can see in the figure 4, 2Mbit in-system 
programmable configuration Flash PROM, 1M-byte 
of Fast Asynchronous SRAM, 8-color VGA display 
port, 9-pin RS-232 Serial Port, a PS/2 port, slide 
switches, buttons and LEDs. The board is in-system 
programmable through JTAG IEEE 1149.1 
Interface, connected to PC parallel port.  
     The programming circuit simply connects the 
parallel port pins driven by the Xilinx CAD tools 
directly to the FPGA programming pins. The 
software we have used is Xilinx Integrated Software 
Environment (ISE) 6.1i, a complete CAD 
environment for implementation of complex digital 
circuits. We have generated the source file of the 
new project (schematic diagram or VHDL) and we 
have obtained all the fitting information about our 
design. The bit file may be downloaded in the FPGA 
by using Xilinx’s iMPACT programmer tool. 
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Table 1  Implementation of a boolean function 
 

             Function Results after placing 
       and routing eq.1 eq.2 eq.3  CS 
maximum path delay(ns) 10,47 10,02 10,25 10,59
number  of  4 in. LUTs   1    1    1    1 
number of bonded IOBs   4   4   4   4 
number of slices   1    1    1    1 
total equivalent gates   6    6    6    6 
additional JTAG gates  192  192  192  192
peak memory usage (M)  65  65  65  65 
total time to PAR (sec)   2   2   2   2 

 
     The design step is called “fitting” to “fit” the 
design to the target device. In CPLD, a device with a 
fixed architecture, the software needs to pick the 
gates and interconnect paths that match the circuit. 
This is usually a fast process, and we have noticed in 
[5] that all the results are the same. We can assume 
that our software finds an optimal way in connecting 
the hardware resources of the circuit, even if the 
function is not done in a minimal form.  
     The term “fitting” has historically been used to 
describe the implementation process for CPLD 
devices and “place and route” has been used for 
FPGAs. Implementation is followed by device 
configuration, where a bitstream is generated from 
the physical place and route, and downloaded into 
the target programmable device.  
      For FPGAs the implementation process 
undertakes 4 steps: “translate”, that interprets the 
design and runs a Design Rule Check (DRC), “map” 
that calculates and allocates resources in the targeted 
device, “place and route” that places the logic blocks 
in a logical position and utilises the routing 
resources, and “configure” that creates a 
programming bitstream. 
     Results after “place and routing” step for our 
boolean function, are given in the Table 1. We have 
used the first 3 equations given in subsection 2.2 and 
the Canonical Sum (CS) of the minterms ([8]). 
     The program has used only 1 four-input Look-Up 
Table (LUT) from the total number of 3840. A LUT 
is in essence a piece of SRAM. The inputs to a LUT 
give the address where the desired value is stored. 
For a boolean function, a LUT can be made by 
storing the correct outputs in the slots to which the 
inputs point. Current logic blocks are based on 
LUTs in order to minimize delay and avoid wasting 
space. LUTs may have any number of inputs, 
leading to logic blocks of anywhere from medium to 
very coarse granularity. In [6] it was demonstrated 
that 4 inputs LUTs are indeed best for optimizing 
both speed and area of FPGA. This 4 inputs LUTs 
remain the industry standard for FPGAs, although in 
. 

Table 2  Implementation of a sequence detector 
 

   Sequence Detector Results after placing 
       and routing eq.4- 

    7 
eq.8- 
   11 

eq.12-
  15 

minimum clock period(ns) 4,630 3,618 5,844 
number  of  4 in. LUTs     2     3     4 
number of bonded IOBs     2     3     3 
number of slices     2     2     2 
number of slice flip-flops     3     3     3 
number of GCLKs     1     1     1 
total equivalent gates    39    45    51 
additional JTAG gates   144   144   144 
peak memory usage (M)    65    65     65 
total time to PAR (sec)     2     2     2 

 
Table 3  Implementation of a computer interface 
 

 Computer InterfaceResults after placing 
       and routing eq.16-22     GA 
minimum clock period(ns)    5,078    6,470 
number  of  4 in. LUTs        9       11 
number of bonded IOBs        9        9 
number of slices        3        3 
number of slice flip-flops        3        3 
number of GCLKs        1        1 
total equivalent gates       81       93 
additional JTAG gates     432     432 
peak memory usage (M)       65       65 
total time to PAR (sec)        2        2 

 
[2] has been discovered that sometimes grouping 
several connected 4 inputs LUTs into a single logic 
block minimizes delays and area.  
     Another one difficult problem is the optimizing 
the routing of wires between logic blocks. The 
greatest area of an FPGA is used for routing, and it 
has the potential to cause a great deal of delay. We 
can see in the table 1 that CS representation of the 
function has the maximum combinational path delay 
(about 10,59 ns), the Karnaugh Map has a delay of 
10,47 ns, and the evolved function has a delay of 
10,25 ns. The minimum delay is obtained for 
equation 2, but we must remember that this 
representation has been generated in an heuristic 
way, there is no algorithm for this solution. The best 
known algorithm remains the evolutionary one, 
presented in subsection 2.2. 
     In sequential circuits, the optimal  state 
assignment is crucial. The best implementation of 
the sequence detector is given by the equations     
(4-7), but the minimum clock period is greater than 
in second implementation (a longer combinational 
path delay). In our circuit, the total number of LUTs 
is 3840, the total number of slice flip-flops is also 
3840, the total number of slices is 1920, the total 
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number of bonded IOBs is 173 and the total number 
of GCLKs is 8. Comparable results have been get 
with this circuit in CPLD implementation ([5]). It’s 
true that the main differences in the complexity of 
these three circuits are given by the state 
assignment. In the best solution, the state assignment 
has been evolved with a GA ([1]).  
     If we are looking now in the table 3, we can see, 
for the first time, that an evolutionary algorithm 
(GA) is worse than a conventional one. We must 
remember again that in this case, our fitness 
criterion was a feasible solution in a CPLD 
structure, and not the minimization of resources in 
FPGA. As we can see, this evolutionary solution is 
bad for a FPGA implementation, but was very good 
for a CPLD one. We have shown in [5] that the 
implementation based on equations (16-22) has used  
7/64 macrocells, 11/224 product terms, and 7/160 
function block inputs from the CPLD circuit 
XCR3064XL, while the GA implementation, which 
a significant greater cost in resources, has used only 
7/64 macrocells, 10/224 product terms, and 7/160 
function block inputs. Amazing was the fact that our 
GA have supplied a better solution than the one 
given by the minimization tool used for this purpose 
by the CAD software.  
 
 
4   Conclusions 
In this paper we have compared two different 
paradigms in digital design: the conventional design 
and the evolutionary design. Our goal was to 
optimize the digital circuit and to implement it with 
minimum resources in a FPGA.  
     We have shown that pure combinational circuits 
are implemented almost optimal, even if the boolean 
functions are faraway of their minimal form, that is 
software finds the optimal way in connecting the 
hardware resources of the circuit. Even in this case, 
an evolutionary algorithm may offer a less 
maximum combinational path delay and may be 
considered.  
     Sequential circuits are more sensitive, because of 
the state assignment, but evolutionary  design 
assures a better fitting of circuit resources in all 
cases that has been investigated. The goal of the 
fitness must be the minimum resources in FPGA,  
and the state assignment must be evolved with a 
GA. 
     Future research must be done in this area. Firstly 
it is important to find a better representation of the 
circuit in chromosomes, because complex functions 
need a great number of architecture bits, which 
directly influences the GA search space. EHW 

successfully succeeds only when fitness reaches 
100% and in huge search spaces this condition may 
be not always possible.  
     FPGAs are reconfigurable circuits and they may 
be used in intrinsic EHW. Future research must be 
done in this area. First implementation of an 
intrinsic EHW in FPGA has been described in [7].  
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