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Abstract: -  We  study  the  asymptotic  behaviour  of  generalized  heat  equations  describing  a  periodic
heterogeneous material with multiple scales when the fineness of the structure goes to zero. For different
ratio between the characteristic  sizes of the two spatial scales and the single time scale we find different
equations, defined on a representative unit, providing us with the connection between the microstructure and
the effective properties.
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1  Introduction
We will study the generalized heat equation
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where the function a oscillates heavily for small ε .
The bounded open set Ω  represents a piece of some
heterogeneous  material  and  ),0( T  is  the  time
interval  to  be  studied.  Solving  this  equation
numerically for a fixed small ε  may be difficult or
even  impossible.  It  is  often  enough  to  find  the
effective  properties,  that  is,  how  the  material
behaves on a macroscopic level, and the associated
solution. For this purpose we use homogenization,
see e.g. [2] and [3]. 

The  idea  is  to  study  a  sequence  of  equations
corresponding  to  an  increasing  fineness  of  the
structure and see if there will be a stabilization of
the properties. More precisely, the homogenization
problem consist in studying the asymptotic behavior

of the corresponding sequence of solutions  
εu  and

finding the limit equation which admits the limit u
as  its  unique  solution.  This  equation  is  called  the
homogenized  problem  and  the  solution  is  an
approximation  of  the  solution  to  (1)  for  small  ε .
The effective properties that appear in this equation
can be attained from certain  equations  defined on
representative units. This means that the numerical
calculations  simplifies  considerably  in  the  sense
that  there  are  no  rapid  oscillations  in  these
problems.

2  G-convergence
The problem posed in (1) in the introduction means
that  we  want  to  investigate  the  convergence  of
sequences  of  operators  in  certain  evolution
problems. A sequence of operators  hA  can be said
to converge to a limit operator A  in the sense that a

sequence  of  solutions  
hu  to  the  corresponding

problems
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converges  in  some sense  to  the  solution  u  to  an
equation
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This kind of convergence is well studied under the
name of parabolic  G-convergence for  operators  of
the type 

( ).,, utxauA hh ∇⋅∇=

This means that the solutions 
hu  to the sequence of

problems
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converges to the solution u  to 
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where  
ha  and  b  fulfil  certain  monotonicity  and

growth conditions, see [7], [8] and [9]. In the next
section we will study a special case of this type of
convergence.

3  Homogenization
G-convergence guaranties the existence of the limit
equation,  but  does  not  tell  us  much  about  the
operator  ),,( ⋅txb  representing  the  effective  heat
conduction properties.  We will  study the  equation
(1), which means that we have chosen 
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For the special case when the operator is linear, i.e.,

( ) ( ),,,,,, 2 txutxxautxa r
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we have the usual linear heat equation for a material
whose  properties  varies  on two spatial  scales  and
one  time  scale,  see  [5].  This  is  illustrated  in  the
figures 1 and 2 below, for  t fixed and for  6.0=ε

and 1.0=ε  respectively.

Fig.1: The pattern of oscillations of a for 6.0=ε .

Fig.2: The pattern of oscillations of a for 1.0=ε .

We will see that it is possible to determine the limit
operator and discover that this is done in different
ways for different values of r .

For  2=r  the  sequence  of  operators  
ha

corresponding to the sequence of problems (1) 



G-converges to a limit b , that is }{ εu  converges to
u  which is the unique solution to the homogenized
problem 
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It turns out that the limit operator b  takes the form
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solved  for  ),( 1 sy  in  )1,0(1 ×Y  and  ),( 2 sy  in
)1,0(2 ×Y  respectively, assuming  1u  and  2u  to be

periodic  in  these  variables  with  respect  to  the

interval  (0,1)  and the  unit  cubes  1Y  and  2Y .  The
proofs are found in [4] and [5], where we use multi-
scale  convergence,  see  Section  5,  and  perturbed
testfunctions, see [4].

For  32 << r  the homogenized problem and the
limit operator can be shown to have the same form
as  in  the  previous  case.  However,  the  equations
needed  to  translate  the  properties  on  the
microscopic level to global effective properties are
different, namely
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See  [4]  and  [5].  Other  cases  when  0>r  can  be
investigated  using  similar  methods.  Numerical
experiments  for  this  kind  of  problems  are  being
prepared.

4  Conclusions
Compared to [7],  [8] and [9]  we study a problem
containing  an  additional  spatial  scale.  The
consequences of the relation between the speed of

the oscillations in these scales on the one hand and
in the time scale on the other is investigated. We see
that  different  choices  of  oscillation  frequencies
result in different local problems, which capture the
oscillations  on  the  microscopic  level.  This
information is then used to describe the properties
on  a  macroscopic  level.  For  the  briefness  and
lucidity  of  the  paper  we consider  the problem (1)
only for the cases 2=r  and 32 << r . For 2=r  we
have  the  correspondence  of  the  self-similar
homogenization case in [7] and for 32 << r  one of
the cases  of  non self-similar  homogenization.  The
other cases can be treated by similar extensions of
the results  in [5].  The new achievement compared
to [5] is that we allow the response of the material
to  be  nonlinear  under  certain  monotonicity  and
boundedness conditions.

5  Mathematical background
An  efficient  method  for  solving  homogenization
problems is based on two-scale convergence which
was introduced  by Nguetseng,  see  [6],  in  the  late
80's. He proved that under the assumption that 
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for all  ),( yxv  which are smooth and periodic with
respect to the unit cube Y  in the second argument.

The sequence }{ εu  is said to two-scale converge to
u .  The  corresponding  convergence  concept  with
multiple scales is studied by Allaire and Briane in
[1].

For the treatment of our problem we use a type
of convergence which includes 3 spatial scales and

2 time scales. A sequence }{ εu  is said to 3,2-scale
converge to u  if 
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for all v  periodic in 1y , 2y  and .s  This is denoted 

u x, t 3,2 u x, t, y1 , y2 , s .

Under  certain  boundedness  conditions  on  
εu ,  its

gradient  and  its  time  derivative,  which  follow
naturally from (1), it holds that 

u x, t 3,2 u x, t  y1 u1 x, t,y1 , s  y2 u2 x, t, y1,y2 , s ,

where 1u  and 2u  are periodic in 1y , s  and 1y , 2y ,
s  respectively.  The  functions  1u  and  2u  are  the
same as those appearing in the local problems, see
Section  3. For  details  see  [1],  [4]  and  [5].  In the
proof of the results in the preceding section the key
to the general monotone case is to prove that 

aj
x , x

2 , t
r , u 3,2 a j y1,y2 , s, u  y1 u1  y2 u2 .

This  is  accomplished  by  means  of  perturbed
testfunctions in [4].

The  convergence  of  the  sequences  }{ εu  and
}{ hu  in (1) and (2) respectively takes place in the

norm topology  of  ( )( )TL ,02 ×Ω  and  in  the  weak

topology of ( ) ( )( )ΩΩ 22,1
0

1
2 ,;,0 LWTW , see [10].

The  operators  ( )utxa h ∇⋅∇ ,,  are  monotone  in
the sense that
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see [4] and [11].
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