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Abstract: - This paper presents a finite element model for incompressible laminar two-phase flows. A
two-fluid model, describing the laminar non-equilibrium flow of two incompressible phases, is discretized by
means of a properly designed Streamline Upwind Petrov-Galerkin (SUPG) finite element procedure. Such
a procedure is consistent with a continuous pressure equation. The design and the implementation of the
algorithm are presented together with its validation through a comparison with results available in the literature.
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1 Introduction
The finite element (FE) methodology is a numerical
approach to solve approximately a partial differential
equation. There are some advantages in using the FE
method. First, there are no restrictions on the mesh
used to discretize the domain, so very complex ge-
ometries can be easily handled. A characteristic of the
method is that it does not attempt to solve a partial dif-
ferential equation (PDE) itself, but it rather searches a
solution for an integral weak formulation of the PDE.
This integral form is most commonly obtained from a
weighted residual formulation. An advantage com-
ing from this particular approach is that there is a
common and widespread knowledge on the possibili-
ties to solve stabilization problems [1, 2, 3]. Starting
from consolidated techniques applied to single-phase
flow, the present work focus on the achievement of a
properly designed finite element based numerical sta-
bilization of a two-phase flow model.

Two-phase flows are encountered in a wide vari-
ety of engineering applications ranging from power
generation and conversion to biological flows. This
leads to a general interest in two-phase models [4] that
may describe the behaviour of these systems. A com-
promise between the complexity of the model and its
suitability to the physics of the problem is reached in
the two-fluid models, obtained through space (or time
or space-time or ensemble) averages of the Navier-
Stokes equations. These averaged models describe
the two-phase systems from a macroscopic point of
view, allowing a more engineering oriented analysis.

In the following, the governing equations describ-

ing the two-phase flow and the stabilized finite ele-
ment approach are given. Then, some test cases, to
validate the proposed methodology, are presented.

2 Two-phase model
The governing equations, describing the behaviour of
the two-phase flow, are presented in this section.

2.1 Basic Concepts
The adopted model is an Eulerian-Eulerian one, since
both phases are treated as continua. Moreover, a pres-
sure equilibrium between the phases is assumed, lead-
ing to the following relation:

pl = pg = p (1)

where p is the pressure, and the subscripts l and g

are referred to the primary and the secondary phases,
respectively.

Since the phases are considered as interpenetrat-
ing, each of them occupies a well-defined volume of
space. The volume Vq of the generic phase q is de-
fined by

Vq =

∫

Ω

αqdΩ (2)

where αq is the phasic volume fraction, representing
the volume fraction occupied by the phase q in the
whole domain Ω. The summation of the phase vol-
umes must recover the whole domain, so the volume
fractions of the phases are linked by the following re-
lation:

αg + αl = 1 (3)
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Equation (3) represents the fundamental constitutive
law for the volume fractions.

2.2 Mass Conservation
The two-phase flow model must guarantee the conser-
vation of mass and momentum.

Referring to the continuity equation of the generic
phase q, with the hypothesis of incompressibility, one
can write:

∂αq

∂t
+ ∇ · (αq~uq) = 0 (4)

where ρq and ~uq are the density and the velocity of
the phase, respectively.

2.3 Momentum Conservation
Without body forces, the momentum balance for the
generic phase q yields

∂~uq

∂t
+ ~uq · ∇~uq = ~Fp,q + ~Fv,q + ~Fd,q (5)

where ~Fp,q is representative of the pressure contribu-
tion, ~Fv,q of the viscous force, and ~Fd,q of the drag
force, i.e. the interaction between the phases.

The pressure and the viscous force contribution
are equal to

~Fp,q = −
1

ρq

∇p ~Fv,q =
1

ρqαq

∇·
(

αqτ q

)

(6)

with the stress tensor written as

τ q = µq

(

∇~uq + ∇~uT
q

)

(7)

where µq is the shear viscosity and the superscript
symbol T denotes the transpose of ∇~uq.

Referring to the primary phase l and to the sec-
ondary phase g, the drag force can be written as

~Fd,l =
3

4

CD

dgρl

αgρ|~ug − ~ul| (~ug − ~ul) (8)

where CD is the drag coefficient, dg is the diameter
of the bubbles of the secondary phase and ρ is the
mixture density defined as

ρ = αlρl + αgρg (9)

2.4 System of Equations
Referring to the primary phase as l and to the sec-
ondary phase as g, the chosen set of variables is done
by

U = (p ul vl αg ug vg)
T (10)

Hence, the final system of equations is made of six
equations: five equations are given by the conserva-
tion of the momentum for each phase and the con-
tinuity equation written for the secondary phase vol-
ume fraction. The remaining continuity equation is
not needed because of the costitutive relation (3).

The sixth equation, needed for the pressure eval-
uation, is obtained from the conservation of the total
volume (

∑

q=l,g αq = 1) applied to the mass conser-
vation equations:

∑

q=l,g

∇ · (αq~uq) = 0 (11)

Then, for this equation, the artificial compressibility
formulation is adopted: a pressure time derivative is
introduced to enhance robustness for steady simula-
tions [5]. The re-arranged equation for the pressure
is

1

ρc2

∂p

∂t
+∇· ((1 − αg)~ul)+∇· (αg~ug) = 0 (12)

where c is a reference velocity and ρ is the mixture
density.

3 Finite element approach
The discretization of the governing equations is made
through a Galerkin finite element approach with P1
basis functions for all the variables [6]. By means
of this approach, piecewise linear functions are used
both for the basis and the weighting functions. In ad-
dition, a Petrov-Galerkin stabilization is adopted.

3.1 Galerkin Formulation
The governing equations can be written as a system
of equations in terms of the chosen set of variables U

L(U) = A0U ,t + F
adv
i,i − F

diff
i,i = S (13)

where F
adv
i,i = AiU ,i is the advective contribution,

F
diff
i,i is the diffusive contribution, and S represents

the source term.
Introducing the trial solution space Vh, and the

weighting solution space Wh, the weak form of (13)
reads as find U ∈ Vh such that ∀W ∈ Wh

∫

Ω

(W ·A0U ,t−W ,i·F
adv
i +W ,i·F

diff
i −W ·S) dΩ

−

∫

Γ

W · (−F
adv
i + F

diff
i ) dΓ = 0 (14)

where Ω is the spatial domain and Γ represents its
boundaries.
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3.2 SUPG Formulation
The stabilization is done following a Streamline Up-
wind Petrov-Galerkin (SUPG) procedure applied to
advection-diffusion systems. The new integral equa-
tion is
∫

Ω

(W ·A0U ,t−W ,i·F
adv
i +W ,i·F

diff
i −W ·S) dΩ

−

∫

Γ

W ·(−F
adv
i +F

diff
i ) dΓ+ST supg = 0 (15)

where

ST supg =

nel
∑

e=1

∫

Ωe

A
T
i U ,i ·τ (L(U )−S)dΩ (16)

In the above formula Ωe is one of the nel elements
in which the domain is divided into, and τ represents
the matrix of the intrinsic time scales of the stabilizing
operator.

The choice of τ is not trivial; here a simple diago-
nal matrix is adopted

τ = diag(τp, τm, τm, τα, τm, τm) (17)

with

τp = τm = τα (18)

and the choice of τm is done by following some defi-
nitions available in the literature [2, 7].

4 Numerical Results
In this section, the results of the numerical simulation
of the two-phase, laminar, steady flow in a channel
and in a T-junction are presented.

4.1 Two-Phase Flow in a Channel
The first test case concerns with the two-dimensional
two-phase laminar flow in a channel. Nevertheless
this example presents a relatively simple geometry,
the presence of two phases renders the flow much
more complex than the single phase one. In the present
calculation no interactions between the two phases
are considered (i.e. zero drag force).

The simulation is obtained by imposing the veloc-
ity at the inlet and setting uniform zero pressure at
the outlet, so that the pressure at the inlet is evalu-
ated from the computation. The other boundaries are
treated as no-slip walls. The chosen inlet velocity pro-
file is set to be uniform. The geometry is shown in
Fig. 1. For the given geometry and velocity u at the
inlet, the Reynolds number is

Re =
ud

ν
(19)
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Figure 1: Two-phase flow in a channel - geometry.

Reynolds Number Re1 = 100 Re2 = 100

Kinematic Viscosity µ1 = 0.01 µ2 = 0.01

Density ρ1 = 1.0 ρ2 = 0.5

Inlet Volume Fraction α1 = 0.5 α2 = 0.5

Table 1: Two-phase flow in a channel - physical prop-
erties.

where ν is the kinematic viscosity. Table 1 presents
the physical properties of the two phases.

Different grids are considered: the coarsest grid
consists of 1699 nodes and 3236 elements, and the
finest one consists of 33965 nodes and 67168 ele-
ments. The grids present a boundary layer refinement.

The comparison with the reference results in [8]
is done for the horizontal velocity profiles of both
phases along the center-line of the channel. The re-
sults, as seen in Fig. 2, show a quite good agreement
with the reference solution. In Fig. 3 the dependency
of the solution from the grid is also shown. Further
comparisons are made for the pressure and the vol-
ume fraction. Figure 4 shows the static pressure along
the centerline of the channel for the two different so-
lutions. Regarding the volume fraction, the compari-
son is made through the values obtained along a ver-
tical cut at x = 2.5d. The results are shown in Fig.
5.

4.2 Two-Phase Flow in a T-Junction
The aim of this test case is to demonstrate the cor-
rectness of the implementation of the model and its
accuracy for relatively complex flow patterns due to
phase separation and mixing. The solution obtained
is again compared with the one presented in [8]. The
geometry of the problem is shown in Fig. 6.

The simulation is carried out setting the same uni-
form velocity u at the two inlets and zero pressure at
the outlet. The remaining boundaries are treated as
no-slip walls. For the given geometry and velocity u

at the inlet, the Reynolds number is defined as

Re =
ud

ν
(20)
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Figure 2: Two-phase flow in a channel - comparison
for horizontal velocity profiles along y=0.5d between
[8] and the present solution.
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Figure 3: Two-phase flow in a channel - comparison
for horizontal velocity profiles along y=0.5d in the
present solution with different grids.
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Figure 4: Two-phase flow in a channel - comparison
between the present and the reference solution [8] for
the pressure profiles along y = 0.5d.
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Figure 5: Two-phase flow in a channel - the present
and the reference solution [8] for the primary phase
volume fraction profiles along x = 2.5d.
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Figure 6: Two-phase flow in a T-junction - geometry
of the problem.

On Tab. 2 the value of the physical properties of both
phases are shown.

Reynolds Number Re1 = 100 Re2 = 75

Kinematic Viscosity µ1 = 0.01 µ2 = 0.0066

20 Density ρ1 = 1.0 ρ2 = 0.5

Inlet Volume Fraction α1 = 0.5 α2 = 0.5

Table 2: Two-phase flow in a channel - physical prop-
erties.

Different unstructured grids are considered for the
simulation: the coarsest grid consists of 1676 nodes
and 3158 elements, and the finest one consists of 9981
nodes and 19468 elements. The grids present a bound-
ary layer refinement, to better reproduce the behaviour
of the flow near the corners. In order to be as close as
possible to the solution of [8], the same drag force
parameters are used. In particular

CD = 1 and dg = 0.1 (21)

The comparison with the reference results [8] is
made by plotting the horizontal and vertical velocity
profiles along the center-line of the main channel of
the T-junction. The results are shown in Fig. 7. The
velocity plotted are not referred to a specific phase,
since, due to the presence of the drag force, the phases
have the same components of velocity. Good agree-
ment is achieved with the reference solution. In Fig.
8 the sensitivity of the solution from the grid is also
shown. Regarding the volume fraction, the compar-
ison is made through the values obtained along two
different cuts, at x = 3.5d and x = 6.5d. Figures
9-10 show the results from [8] and the present solu-
tion. The agreement between the two solutions is less
good respect to the one obtained for the velocity pro-
files. Nevertheless the maximum value is comparable,
some differences are located especially near the walls.
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Figure 7: Two-phase flow in a T-junction - compari-
son for the velocity profiles along y=0.5d between [8]
and the present solution.
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Figure 8: Two-phase flow in a T-junction - compar-
ison for the velocity profiles along y=0.5d in the
present solution with different grids.
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Figure 9: Two-phase flow in a T-junction - primary
phase volume fraction profiles along x=3.5d and
x=6.5d in [8].
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Figure 10: Two-phase flow in a T-junction - pri-
mary phase volume fraction profiles along x=3.5d

and x=6.5d in the present solution.

5 Conclusions
This work dealt with the use of a Galerkin SUPG FE
formulation for two phase-flows.

After the description of the two-phase flow model,
the strategy to achieve the discretization and the sta-
bilization of the set of equations has been presented.
The resulting system of equations has been discretized
as an advective-diffusive system, so that a SUPG sta-
bilization has been performed, considering the advec-
tive matrice contributions. The accuracy of the method
has been proved by comparing the results obtained,
using multiple meshes, for the channel and the T-junction
flow problems with the ones of [8].

The results obtained highlight how the choice of
this approach is very promising in the two-phase flow
treatement. They also suggest a better stabilization is
needed in the boundary layer region, thus leading to
the introduction of a discontinuity capturing operator,
acting in this region.
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