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Abstract: In order to make Durbin’s υ2-f model robust and applicable for calculation of complex
turbulent flows with heat transfer, we proposed replacement of variables so that the transport
equation for ζ = υ2/k is solved instead of υ2. Scrutinising and extending the work of Kader, we
are presenting compound wall treatment which defines appropriate boundary condition for the
flow quantities, according to the given mesh and local flow conditions, regardless of the position
of the near-wall cell. It combines the integration up to the wall and the wall function approach
using physical rationale which are described. This wall treatment is general approach for near-
wall region turbulence modelling, but here it is presented in conjunction with ζ-f model. The
computations of standard generic test cases (steady and pulsating channel, backward-facing, wavy
hillstep and round impinging jet) using proposed near-wall treatment give satisfactory agreement
of the results with experiments and DNS data.
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1 Introduction

Capturing and resolving near-wall effects is
crutial for accurate prediction of wall bounded
turbulent flow characteristics. In that sense
the elliptic relaxation model of Durbin [1]
brings significant improvement, in compari-
son to standard k-ε, by introducing the trans-
port equation for wall-normal Reynolds stress
component υ2 (which describes better the
Reynolds stress anisotropy) and elliptic relax-
ation function f (which captures non-viscous
wall effects).

However, despite the fact that υ2-f model
is giving much better results then k-ε model
for many complex turbulent flows with heat
transfer, it is still not widely used for engi-
neering purposes because of its restrictions:
near-wall behaviour, boundary condition for
f and mesh quality near the wall.

In order to overcome these shortcomings,
we proposed a modification of Durbin’s eddy-
viscosity model in which the transport equa-
tion for the velocity scale ratio ζ = υ2/k is
solved, instead of the equation for υ2 [11].
The reason for this development originated

from the desire to improve the numerical sta-
bility of the model, especially when using seg-
regated solvers.

Another novelty that we proposed is the
application of a quasi-linear pressure-strain
model in equation for f , based on the formula-
tion of Speziale, Sarkar and Gatski [3], instead
of using basic IP model. This brings some im-
provement especially for the non-equilibrium
wall flows.

In order to ease the mesh quality require-
ments we proposed the wall treatment which
reduces either to standard integration to the
wall (when a near-wall cell is in the viscous
sublayer) or to appropriate wall functions ap-
proach (when a near-wall cell lays in a fully
turbulent layer) according to the given mesh
and local flow conditions [18]. This wall treat-
ment combines the wall limiting value and
the farfield value of given variable through
the unified expression suggested by Kader [2],
making redundant in that way the informa-
tion about the size or the distribution of the
near-wall cells.

The computations of flow and heat transfer
in a plane channel, behind a backward fac-
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ing step and in a round impinging jet show in
all cases satisfactory agreement with experi-
ments and direct numerical simulations.

2 The ζ-f model

The modification of original Durbin’s model
[1] is done by introducing normalised velocity
scale ζ = υ2/k, which represents the ratio of
the two time scales: k/ε and υ2/ε. The trans-
port equation for ζ, which can easily be de-
rived from the transport equations for υ2 and
k, is solved instead of the transport equation
for υ2. The direct transformation yields:

Dζ

Dt
= f − ζ

k
P +

∂

∂xk

[(
ν +

νt

σζ

)
∂ζ

∂xk

]
+X

(1)
where X = 2

k

(
ν + νt

σζ

)
∂ζ
∂xk

∂k
∂xk

is ”cross dif-
fusion” which comes as a consequence of the
transformation.

The form of the equation with the cross dif-
fusion X retained represents pure transforma-
tion of transport equation for υ2 into ζ equa-
tion. Although X has certain influence close
to the wall, it can be omitted in order to re-
tain a simple source-sink-diffusion form of the
transport equation, and the omission can be
compensated by re-tuning some of the coeffi-
cients. In case of retaining the original form of
the transport equation (X included) no mod-
ification of model coefficients is needed. But
apart from an extra implementation effort,
the intervention on X is needed in this case:
k, which is in the denominator of X, goes to
zero close to the wall, and therefore it has to
be limited similarly to the time scale limiting
with its Kolmogorov value.

Even though by solving either ζ or υ2 equa-
tion one should get the same result, there is
improved numerical stability when ζ approach
is used in comparison to its υ2 counterpart. In
that sense following advantages from the com-
putational point of view can be identified:

- instead of ε appearing in the υ2 equation,
which has a non-zero value at the wall
that is difficult to reproduce correctly in
the near-wall layer, the ζ equation con-
tains the turbulence kinetic energy pro-
duction P, which has zero value at the

wall and is much easier to reproduce ac-
curately if the local turbulent stress and
the mean velocity gradient are captured
properly.

- in υ2 equation three terms on the right
hand side have to be in balance very close
to the wall since all three are proportional
to y2, whereas in ζ equation only f and
Dζ have to be in balance very close to the
wall, since Pζ/k goes to zero faster then
other two. This is important especially
when segregated solvers are used.

- the boundary condition for f deduced
from the budged of ζ equation in the limit
when the wall is approached reads:

fw = lim
y→0

−2νζ
y2

(2)

i.e. there is in the denominator the min-
imal distance to the wall to the power
two (y2), and not to the power four (y4)
like in the υ2-f model. This boundary
condition is certainly less stiff which con-
tributes to improved robustness, but also
it is of the same form as εw and therefore
it can be treated in analogous manner in
the computational procedure.

This simple transformation from υ2 to ζ in-
troduces another perspective in understand-
ing the turbulent quantities. Being nor-
malised and dimensionless, ζ is appropriate
measure of the flow anisotropy, better then υ2

alone, because it describes the flow anisotropy
in respect to local flow conditions. In that
sense one can mathematically derive the lim-
iting values for ζ, using Schwarz inequality
uiui > 0 and the definition of turbulent ki-
netic energy k = ulul/2, whereas for υ2 no
such a constrain can be defined.

uu

k
+
vv

k
+
ww

k
= 2

for uu
k → 0 and ww

k → 0

0 ≤ vv
k = ζ ≤ 2

(3)

and in case of isotropic flow conditions, uu =
vv = ww the value of ζ is:
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(
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k

)

i
= 2

ζi = 2/3

(4)

so from the value of ζ one can immediately see
how much and in which direction (reducing
wall-normal Reynolds stress component when
ζ is close to zero, or reducing other two normal
components of Reynolds stress tensor if ζ is
close to two) is certain flow region departing
from the isotropic flow conditions.

Note that physically the constrain from
Eq. (3) is even tougher because the equality
is valid only when the Reynolds stress normal
components involved are equal to zero, which
cannot occur in reality.

2.1 Quasi-linear pressure strain
term

Instead of using linear IP model for the rapid
part of the pressure strain term, which is
a standard practice used in υ2-f model, we
adopted more advanced quasi-linear model of
Speziale et al. (SSG) [3]:

Πij,2 = −C ′2Paij + C3kSij

+ C4k(aikSjk + ajkSik − 2
3δijaklSkl)

+ C5k(aikΩjk + ajkΩik

(5)
which was found to capture better the stress
anisotropy in the wall boundary layers.

Applying this model to the wall normal
stress component Π22,2 and using standard as-
sumption P22 = 0, the following form of the f
equation in conjunction with the ζ equation
with X = 0 is obtained:

L2∇2f − f = 1
τ

(
c1 + C ′2

P
ε

) (
ζ − 2

3

)

−
(

C4
3 − C5

)
P
k

(6)

Adopting the coefficients for the SSG
pressure-strain model, with C4 = 0.625 and
C5 = 0.2, and noting that the last term in
Eq. (6) can be neglected because (C4/3 −
C5) ≈ 0.008 as compared with the first term,
we arrive to the following set of model equa-
tions constituting the ζ-f model:

νt = CD
µ ζkτ (7)

Dk

Dt
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∂

∂xj
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)
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]
(8)
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)
∂ε
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]

(9)

L2∇2f − f =
1
τ

(
C1 − 1 + C ′2

P
ε

) (
ζ − 2

3

)

(10)

Dζ

Dt
= f − ζ

k
P +

∂

∂xk

[(
ν +

νt

σζ

)
∂ζ

∂xk

]
(11)

with the time and length scale limited with
the Kolmogorov values as the lower bounds,
and Durbin’s realisability constraints [13] as
the upper bounds:

τ = max

[
min

(
k
ε ,

a√
6CD

µ |S|ζ

)
Cτ

(
ν3

ε

)1/2
]

(12)

L = CLmax

[
min

(
k3/2

ε , k1/2√
6CD

µ |S|ζ

)
Cη

(
ν3

ε

)1/4
]

(13)
where the coefficient a takes its recommended
value a = 0.6.

A special attention is needed to the im-
plementation of the realisability constraints.
Some authors are imposing the time and
length scale obtained from the realisability
considerations simply as an upper bound
to previously defined time and length scale
(higher value between Kolmogorov and large
eddy scale). However, that can lead to un-
physical situation (e.g. in the initial phase
of the computation, or in the farfield of the
stagnation region) that the computed time or
length scale gets smaller than the Kolmogorov
scale. For example at the beginning of the
computation, if the flow field is not initialised
properly, the realisability time or length scale
can get the value almost zero, whereas the
Kolmogorov definition would certainly give
the value higher than that. Therefore one
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has to be carefull: Durbin’s realisability con-
straints can be used only as the upper bounds
to the large eddy scales, whereas the Kol-
mogorov scales remain the smallest scales of
eddies in the flow.

2.2 The model coefficients

It was mentioned earlier that because of the
omission of X, some of the coefficients needed
to be re-tuned. The most important change
is the one for the length scale coefficient, be-
cause L influences the value of f , and f is the
only term which can compensate the omitted
term in the ζ equation. It has been chosen to
increase the value of CL so that the level of L
is increased throughout the domain, and not
just the Kolmogorov length scale (that would
be achieved by increasing Cη) which is valid
only close to the wall. This is because oth-
erwise the influence of viscous effects would
be extended further into the fully turbulent
region, even if with original coefficients Kol-
mogorov length scale is already active far be-
yond the viscous sublayer for which it was de-
rived. The agreement with DNS results gave
the value of 0.36 for CL instead of its standard
value 0.22

The other three coefficients which are
changed (Cε1, σζ and C ′2) are slightly mod-
ified, still according to their constrains, for
a fine tuning reasons. In the definition of
Cε1 the square root was dropped, and subse-
quently the coefficients in front of the square
root changed to 0.012, in order to make it
more sensitive for establishing the recovery re-
gion. The value for σζ was changed from 1.0
to 1.2 in order to get better agreement with
DNS results, especially in the wake region. As
for the C ′2, its original SSG value has been re-
duced by about 20% on the same ground as
Durbin reduced the original LRR value of c1
in same proportion in order to take into ac-
count the discrepancy in the definition of ε in
the log-law region.

The final set of model coefficient which are
used (note the reformulation of Cε1) is given
in Table. (1).

3 Simplified analytical wall
function

If RANS equations are solved all the way to
the wall, then the model which is used has
to include the near-wall effects: non-viscous
wall-blocking and viscous damping. In this
case exact boundary conditions for flow vari-
ables can be imposed on the solid boundary,
and the accuracy of the flow calculations in
reproducing local non-equilibrium flow effects
(separation, impingement etc.) depends on
how accurate these effects are described by
the model. The price one has to pay for this
approach is a very fine mesh resolution near
the wall, which can be a limiting factor in case
of complex flow calculations.

However, when the coarse mesh is used so
that the first near-wall cell is in the fully tur-
bulent region, the majority of the local near-
wall effects are not resolved. In this case the
wall functions, which relate the values of the
variables in the cell centres with those at the
wall through pre-integrated simplified expres-
sions, are used to define the boundary con-
ditions at the wall. But simplifications used
for deriving standard wall functions do not in-
clude any non-equilibrium effects, like e.g. in
the log-law which reads:

U+ =
1
κ

ln
(
Ey+)

(14)

where κ = 0.41 is Von Karman’s constant,
E = 8.34 is the log-law additive constant, and
y+ = uτy/ν is normalised distance from the
wall.

Standard log-law is obviously correct only
for the equilibrium flow conditions, so in order
to recover at least a part of non-equilibrium
effects the wall function expression has to in-
clude the non-equilibrium terms. Following
the argumentation of Craft et al. [12] the
momentum equation is analytically integrated
for the near-wall cell, including thus the con-
vection and the pressure gradient, abandon-
ing all traditional assumptions and using only
one: the distribution of the viscosity profile
in the near-wall region. Simplification being
made is that close to the wall the flow is con-
sidered to be two-dimensional, so the momen-
tum equation reads:
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CD
µ Cε1 Cε2 c1 C ′2 σk σε σζ Cτ CL Cη

0.22 1.4(1 + 0.012/ζ) 1.9 0.4 0.65 1 1.3 1.2 6.0 0.36 85

Table 1: Coefficients used for ζ-f model

ρ
∂U

∂t
+ρU

∂U

∂x
+ρV

∂U

∂y
=

∂

∂y

[
(µ+ µt)

∂U

∂y

]
−∂p
∂x

(15)
where t is the time, U and V are the velocity
vector components in the wall-tangential and
wall-normal direction respectively (denoted as
x and y coordinates, as shown on Fig. 1), p is
the pressure, and µ and µt are dynamic molec-
ular and turbulent viscosity respectively.

The approximation of time variation
∂U/∂t, the convection Ui∂U/∂xi and the
pressure gradient along the direction tangen-
tial to the wall ∂p/∂x is that they are con-
sidered to be constant across the near-wall
cell, and known from the previous time step or
previous iteration. For simplicity these three
terms together will be denoted as Ctan:

Ctan = ρ
∂U

∂t
+ ρU

∂U

∂x
+ ρV

∂U

∂y
+
∂p

∂x
(16)

The most common assumption for the vari-
ation of the turbulent viscosity throughout
the near-wall cell is to divide it into two re-
gions (see Fig. 1): viscous sublayer where tur-
bulent viscosity equals zero (only the molec-
ular viscosity plays role there), and fully tur-
bulent region where due to the mixing length
theory a linear variation is assumed:

µt =





0 for y < yv

ρκuτy for y ≥ yv

(17)

where yv is the thickness of the viscous sub-
layer which is defined from the experiments.

There are a few definitions of characteris-
tic friction velocity uτ , traditional one being
uτ =

√
τw/ρ. But here we will adopt the fric-

tion velocity defined through the turbulent ki-
netic energy:

uτ = c1/4
µ k1/2 (18)

where cµ = 0.09.

µt

y
v

y

x

P

w

Figure 1: Sketch of the near-wall cell with the
assumed turbulent viscosity

Following the expression (17), the simpli-
fied momentum equation (15) is integrated
over two distinct regions. Boundary condi-
tions used to determine the constants of these
two integrations are the continuity and the
smoothness of the velocity profile at the in-
terface yv, and its known values at the wall
Uw = 0 and in the cell centre Up = Utan. Af-
ter the integration following expression for the
wall shear stress is obtained:

τw =
U − Ctany

κuτ

yv

µ
+

ln
(
y

yv

)

κuτ

(19)

which is used when the near-wall cell is in the
fully turbulent region.

In order to compare with Eq. (14), we will
rearrange Eq. (19) to get the form recognis-
able from standard log-law. We can rewrite
the denominator of Eq. (19) as follows:

yv

µ
+

ln
(
y

yv

)

κuτ
=

1
κuτ

[
κuτyv

µ
+ ln

(
y

yv

)]
=

= 1
κuτ

ln

(
eκy

+
v y+

y+
v

)
= 1
κuτ

ln (Ey+)

y+ = uτy
ν

(20)
because inserting the standard value for the

viscous sublayer thickness y+
v = 11 one gets
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eκy+
v /y+

v = 8.3, which is the value of the ad-
ditive constant in the standard log-law. This
gives the physical meaning of the constant E.

In the nominator of Eq. (19) we will extract
the velocity, and treat jointly all the other
terms:

U − Ctany

κuτ
= U

(
1− Ctany

Uκuτ

)
= Uψ

ψ = 1− Ctany
Uκuτ

(21)

where ψ is introduced for simplicity, in terms
of normalised values it reads:

ψ = 1− C+
tany

+

U+κ

C+
tan = ν

uτ
3

[
ρ∂U∂t + ρU ∂U∂x + ρV ∂U∂y + ∂p

∂x

]

(22)
and it defines the importance of the non-

equilibrium terms relative to its equilibrium
counterpart.

Finally, inserting Eq. (20) and Eq. (21) into
Eq. (19) the simplified analytical wall function
in normalised form is obtained:

U+ =
1
κψ

ln
(
Ey+)

(23)

which resembles standard log-law (Eq. 14),
but with the correction factor ψ included
which accounts for local non-equilibrium flow
effects. Naturally, for the equilibrium flow
conditions (Ctan = 0, thus ψ = 1) Eq. (23)
reduces to standard log-law (Eq. 14).

The difference between the work of Craft et
al. and this simplified analytical wall function
is that we slightly modified the turbulent vis-
cosity profile. In order to have a continuous
turbulent viscosity distribution they adopted
the profile which is shifted from the wall for
yv, i.e. µt = ρκuτ (y−yv). But to compensate
this shifting they defined the viscous subleter
thickness y+

v = 5.9, which is almost half of
the one we adopted. Their assumption, how-
ever, leads to cumbersome wall function ex-
pressions, so we used Eq. (17) which gives
simplier expressions without any significant
change in its performance.

4 Compound wall treatment

So far we were considering two separate near-
wall modelling cases in respect to the defini-
tion of the boundary conditions: turbulence
models with the integration to the wall (when
exact boundary conditions are imposed at the
wall), and models with the wall function ap-
proach (when the boundary conditions are de-
fined from the wall function expressions). In
order to use either integration to the wall or
the wall function approach, the near-wall cell
has to ley in the viscous sublayer or a fully
turbulent region respectively.

But it is difficult to assure, especially in
case of complex flows, that all near-wall cells
(or great majority of them) ley in one or an-
other region. And since these two approaches
cannot be used together, because of their
mesh requirements which are excluding each
other, there is a need for a unified method in
defining the boundary conditions. Based on
Kader’s idea, we proposed the compound wall
treatment (CWT) [18].

The starting point for such a wall treatment
are the two limiting boundary condition defi-
nitions, the viscous and the fully turbulent, so
the problem that remains is how to combine
the two to get the correct behaviour through-
out the near-wall region. In order to analyse
the possibilities for doing this, we will con-
sider the wall shear stress. The viscous and
the fully turbulent definitions of τw are:

τv
w = ν

Up

yp

τ t
w =

uτ

κψ
ln

(
Ey+)

(24)

where subscripts “p” and “w” denote the val-
ues of the variables in the cell centre and at
the wall respectively (see Fig. 1).

In case of the plane channel flow (DNS
Reτ = 800, [5]) the definitions given by
Eq. (24) are presented on Fig. (2). One can
see that the viscous definition reproduces the
exact boundary value at the wall, it fits the
DNS profile in the viscous sublayer (approx-
imately y+ < 5) and drops to zero further
away. The fully turbulent definition goes from
zero at the wall to exact value in the fully tur-
bulent region (approximately y+ > 30). In
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v
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t
)
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v
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 + (τw

t
)
2
]
1/2

Figure 2: The viscous and the fully turbu-
lent definitions of τw (Eq. 24), and a-priori
evaluation of the considered blending models
(equations 25, 26 and 32). Symbols: DNS of
Tanahashi et al. [5].

the buffer region (5 < y+ < 30) both defini-
tions give approximately the same values.

An easy choice for combining the two lim-
iting values is to take their quadratic mean,
as proposed by Esch and Menter [4]:

φp =
√
φ2

v + φ2
t (25)

where φ is the considered variable, the sub-
script “v” denotes the viscous value, and “t”
the fully turbulent value of that variable.

As shown on Fig. (2), the expression (25)
does have the correct limiting behaviour: it is
reducing to the viscous or the fully turbulent
value in their respective regions. But the over-
estimation produced by Eq.(25) in the buffer
region indicates that there is no physical back-
ground for such a wall treatment – it simply
represents the mathematical connecting of the
two values. One can also generalise the ex-
pression (25) by using (φn

v + φn
t )1/n to obtain

better approximation in the buffer layer, but
the author’s experience with n = 4 produced
only marginal improvement.

In the buffer region both the viscous and
the turbulent effects are of the same impor-
tance, and both viscous and the fully turbu-
lent definitions of boundary conditions give
approximately the same value. Therefore ei-
ther of the two definitions alone is better ap-
proximation than their quadratic mean. Fur-
thermore note that one definition gives cor-

rect value in the region where the other gives
much lower one (see Fig. 2). This means that
a simple switching formula can also be used
as the near wall treatment (especially for the
variables like ε, which have a strong variation
in the wall region):

φp = max (φv, φt) (26)

and its a-priori evaluation in case of τw
for the plane channel flow is also shown in
Fig. (2).

But just like Eq. (25), the relation (26) does
not give a satisfactory result in the buffer re-
gion, since there is no physical justification
for this switching. In order to have correct
behaviour in the buffer region one has to com-
bine the viscous and fully turbulent values
with some physical sound, i.e. the transition
in the treatment of the two regions has to be
done through some flow quantity.

We considered the blending of the wall-
limiting and fully turbulent properties based
on the idea of Kader [2], who proposed unique
temperature profile throughout the whole wall
boundary layer:

Θ+ = Pry+e−ΓΘ+
[
α ln

(
y+)

+ β (Pr)
]
e−1/ΓΘ

(27)
where Θ+ = (Tw − T )ρcpuτ/qw is the nor-

malised temperature difference, α = 2.12 and
β(Pr) = (3.85Pr1/3 − 1.3)2 + 2.12 ln(Pr) are
thermal boundary layer constants, and the ex-
ponent of the blending function ΓΘ is a func-
tion of the normalised distance to the wall
y+ = uτy/ν:

ΓΘ =
0.01 (Pry+)4

1 + 5Pr3y+
(28)

Putting Pr = 1 in Eq. (27), with standard
values for log-law constants adopted (Eq. 14),
we are obtaining analogous expression for the
mean velocity:

U+ = y+e−Γ +
[
1
κ

ln
(
Ey+)]

e−1/Γ (29)

and by putting Pr = 1 into Eq. (28) the
exponent of the blending function becomes:

Γ =
0.01y+4

1 + 5y+
(30)
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where all these terms are shown on Fig. (3)
in case of the plane channel flow (DNS Reτ =
800, [5]).

0.1 1 10 100
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15

20 U
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e
-Γ

y
+

e
-1/Γ

 1/κ ln(Ey
+
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e
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 1/κ ln(Ey
+
)

(a)
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)*e
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e
-Γ

e
-1/Γ

(b)

Figure 3: Terms in Kader’s expression:
blended velocity profile (a), velocity deriva-
tive and blending functions (b).

Expressions (27) and (29) define the blend-
ing of the viscous and the fully turbulent
definition of Θ+ and U+ respectively. Al-
though Kader [2] offered no physical justifica-
tion for these expressions, one can argue that
the blending functions e−ΓΘ and e−Γ repre-
sent the solution of a simplified 1-D elliptic
blending equation:

α (y)− `2
d2α (y)
dy2 = 1

α (y) = 1− e−y/`

φ = φv (1− α) + φtα

(31)

where the characteristic length scale ` is as-
sumed to be constant, the boundary condi-
tions used α → 0 for y → 0 and α → 1 for

y → ∞, and the variables replaced e−Γ =
1− α.

In Eq. (29), however, the blending function
of the fully turbulent part φt was replaced
with e−1/Γ instead of (1− eΓ). This does not
have to be wrong, because due to uncertainty
of both viscous and fully turbulent definition
of the boundary condition in the buffer region
one cannot require the sum of the blending
functions to give unity. In addition, the ex-
ponent in Eq. (30) was set to be proportional
to −y3, unlike Eq. (31) where it is propor-
tional to −y. However, similar idea is pursued
also for the elliptic blending turbulence mod-
els, where the blending formula is used in the
form: φ = φv(1− α2) + φtα

2.
Despite these two small differences, the

principle of the elliptic blending is obvious
in Kader’s expression (Eq. 29). So now we
expand this principle to other properties for
which continuous boundary conditions are re-
quired (in ζ-f model those are P and ε,
whereas for f a specific near-wall treatment
is used):

φ = φve
−Γ + φte

−1/Γ (32)

and its behaviour in case of τ+
w for the chan-

nel flow (DNS Reτ = 800, [5]) was already
shown on Fig. (2). One can clearly see that
apart from a small deviation for y+ between
5 and 10 due to a minor deficiency in Eq. (29)
(see Fig. 3), the resulting τ+

w is in very good
agreement with the DNS data and superior to
expressions (25) and (26).

4.1 Kinetic energy production

The flow calculations with sufficiently fine
mesh resolution in the near-wall region will
reproduce correctly both the turbulent stress
and the velocity gradient. This gives a correct
profile of P, as represented for the plane chan-
nel flow (DNS Reτ = 800, [5]) on Fig. (4a)
with dashed lines. When the coarse mesh
is used, however, neither the turbulent stress
nor the velocity gradient can be obtained cor-
rectly. Therefore in standard wall function
approach the value of P is imposed assuming
local equilibrium conditions: logarithmic ve-
locity profile and constant shear stress. This
gives a simple relation P = uτ

3/(κy) (dash-
dotted lines on Fig. 4a), but it is correct only
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in the fully turbulent region in equilibrium
flows.

However, once we have the analytical ex-
pression for the velocity distribution across
the near-wall region, we can derive an expres-
sion for P by taking (∂U/∂y) obtained from
Eq. (29) (see Fig. 3) in combination with the
near-wall and fully turbulent expressions for
the turbulent stress. This, basically, reduces
to the blending according to Eq. (32), where
φv here is the fine resolution P value from
integration to the wall, and φt is the coarse
mesh wall function P values:

Pp = −uv∂U
∂y

= Cµζp
k2

p

εp

(
∂U

∂y

)2

p

e−Γ

+
c3/4
µ k3/2

p

ψpκyp
e−1/Γ

(33)
Note that here Cµ = 0.22 and cµ = 0.07.

Figure (4a) shows P from Eq. (33), compared
with the integration to the wall and the wall
function approaches.

4.2 Energy dissipation rate

The viscous and the fully turbulent definition
of the turbulence kinetic energy dissipation
rate are:

εv =
2νkp

y2
p

εt =
c3/4
µ k3/2

p

κyp

(34)

and for the case of the plane channel flow
they are shown on Fig. (4b).

The problem with continuous definition of
the boundary condition for ε is similar to
P, so the blending according to Eq. (32) is
straightforward. Only the coefficient in the
exponent of the blending function was modi-
fied due to specific and strong variation of ε
in the near-wall region:

εp =
2νkp

y2
p

e−Γε +
c
3/4
µ k

3/2
p

κyp
e−1/Γε (35)

where Γε = 0.001y+4
/(1 + y+).

0 20 40 60 80
y

+

0

0.1

0.2

0.3

P
k+

DNS, Reτ= 800

fine grid ζ-f solution

standard WF
blended model

(a)

0 20 40 60 80
y

+

0

0.1

0.2

0.3

ε+

DNS, Reτ=800

viscous (εv=2νk/y
2
)

turbulent (εt=0.07
3/4

k
3/2

/κy)

blended (εv e
-Γ

 + εt e
-1/Γ

)

(b)

Figure 4: The fine mesh (integration to the
wall – dashed line) and the coarse mesh (wall
function approach – dash-dotted line) solution
of the production P (a), and the dissipation
ε (b) in the plane channel flow [5]. Full line:
adopted blending model (Eq. 33 and Eq. 35).
Symbols: DNS of Tanahashi et al. [5].

It is noted, however, that for the turbulent
region εt is tied to Pt: Fig. (5) shows that the
production and the dissipation rate, as well
as their averaged values are nearly equal in
the fully turbulent region. Therefore even the
simpler model, like Eq. (26), performs reason-
ably well as a near-wall treatment.

4.3 Elliptic relaxation function

For this function, none of the blending for-
mulations (25), (26) or (32) is adequate for
the CWT, for two reasons. First, the wall-
limit (“viscous”) value of f (fv = −2νζp/y2

p)
and its homogeneous value (fh = (C1 − 1 +
C ′2P/ε)(ζ − 2/3)/τ) have opposite signs. Sec-
ond, while fv ranges from its wall (negative)
value to zero, fh ranges from (positive) infin-
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Figure 5: Distribution of ε and P and their
averaged values in the channel flow. Symbols:
DNS of Tanahashi et al. [5].

ity to its homogeneous value (tends to zero).
Thus there is a huge difference between them
in the buffer region, and no blending (except
the full elliptic solution) can give a realistic
solution there.

Therefore, the simplest wall treatment for
f is to manage its boundary condition in the
same way as for the standard ζ-f model with
integration to the wall, i.e. to impose the wall
value fw obtained from the budget of Eq. (1):

fw =
−2νζp
y2

p

(36)

This definition is correct if the near-wall cell
lays in the viscous sublayer, and it gives zero
value for fw (it drops fast to zero, because
of the power two in the denominator) away
from the wall, which is incorrect. But since
Eq. (36) sets only the boundary condition at
the wall, the f equation (Eq. 10) will produce
some approximate solution for the near-wall
cell centre due to in-domain flow conditions.
This is acceptable because the wall blocking
effect (which f should describe) fades away in
the far-field.

5 Test cases

As an illustration of performance of the pro-
posed model and the near-wall treatment, we
present the results of the computations of sev-
eral test cases: a steady and pulsating plane
channel flow, a round jet impinging into a flat

plate and a flow separating on a backward fac-
ing step with heated bottom wall.

As a reference data for the channel flow
calculation (Reτ = 800), the DNS results of
Tanahashi et al. are taken. The ζ-f results,
shown on Fig.(6), are obtained with very fine
mesh (the first y+ was the same like that used
for DNS calculation), and the υ2-f model
could not give a convergent solution on that
mesh.
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Figure 6: Profiles of velocity (a) and shear
stress (b) for channel flow Reτ = 800. Sym-
bols: DNS data of Tanahashi et al. [5]. Lines:
ζ-f with CWT for different meshes, varying
first y+ from 0.05 to 40.

In order to test the performance of the
wall function for the transient flows we cal-
culated the pulsating turbulent channel flow
with the Stokes length scale l+S = 14, where
l+S =

√
2/ω+, ω+ = ων/uτ and ω is the forc-

ing frequency. For this case the near-wall
treatment is also very important, because dur-
ing the pulsating cycle the level of the turbu-
lent kinetic energy is changing, varying thus
the normalised distance from the wall of the
near-wall cell centre. The reference data are
LES results of Scotti and Piomelli [20], and
the obtained results are given on Fig. (7).

It is clear from Fig. (7) that non-
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Figure 7: Results for the pulsating channel
flow [20]: wall shear stress (a) and centerline
velocity (b).

equilibrium correction factor ψ significantly
improves the prediction. Putting ψ = 1, i.e.
using standard wall function, negative wall
shear stress cannot be reproduced. Addition-
ally, there is a flat part of the profile close
to τw maximum which standard wall function
does not sense, whereas the wall function with
the correstion factor does predict it, just like
with integration to the wall.

The impinging jet flow was calculated for
two Reynolds numbers: Re = 23000 for which
the reference data are taken from the ex-
periment of Boughn and Shimizu [7], and
Re = 70000 for which the reference data are
taken from the experiment of Yan [10] (see
Fig. 8). Both test cases are for the aspect
ratio H/D = 2, and both include the heat
transfer calculation.

Similar to calculation of the channel flow,
the mesh used to calculate impinging jet with
ζ-f model was too fine in the wall-normal di-
rection for the υ2-f model. Therefore the ad-
justments on the ζ-f mesh were needed in or-
der to obtain the convergent υ2-f solution.
The mesh used for CWT is the one used for
standard k-υ2 model with wall function. The
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Figure 8: Velocity profiles at different dis-
tances from the jet centre (a) and Nusselt
number distribution along the impingement
plate (b) for Re = 23000. Symbols: experi-
ments of Cooper et al. [9] for velocities; ex-
periments of Baughn et al. [8] for Nusselt
number. Dashed line: υ2-f model with in-
tegration to the wall. Full line: ζ-f model
with integration to the wall. Dash-dot-dash
line: ζ-f model with wall function.

overall quality of results for both models is
good, and in agreement with the experiments.
However, the ζ-f reproduces the dip in the
Nusselt number distribution better then υ2-f
model (see Fig. 8).

The standard test case for separating flow,
the backward facing step flow was computed
with ζ-f model and CWT for Reynolds num-
ber Re = 28000. The results, shown on
Fig. (10), are compared with the reference
data, the experiments of Vogel and Eaton [6],
and the results obtained with υ2-f model.

Both models are giving satisfactory results,
with υ2-f model performing slightly better in
the recovery region in comparison to ζ-f , as
one can see from Fig. (10).

Another flow with separation was com-
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Figure 9: Velocity profiles at different dis-
tances from the jet centre (a) and Nusselt
number distribution along the impingement
plate (b) for Re = 70000. Symbols: experi-
ments of Cooper et al. [9]. Dashed line: υ2-f
model with integration to the wall. Full line:
ζ-f model with integration to the wall. Dash-
dot-dash line: ζ-f model with wall function.

puted both with υ2-f and ζ-f model: the pe-
riodic flow over the smooth wavy wall (see
Fig. 11). This case is challenging because
the separation point is not defined by the ge-
ometry, unlike for the backward facing step
where the fluid separates always at the step.
Here the position of the separation point is
defined by the local flow conditions, and in
addition the occurrence of the reattachment
and the separation are conjugated since the
flow is periodic in the streamwise direction.
Therefore the difficult part in this calculation
is to get exact spearation and reattachment
points. The reference data are obtained from
the work of Temmerman and Lechziner [21],
and the comparison of the results is shown on
Fig. (11).

0 0.5 1

0

0.5

1

1.5

y/
h

0 0.5 1 0 0.5 1 0 0.5 1

0

0.5

1

1.5

Exp. Vogel&Eaton

k-ζ-f int., y
+

max=1.2

k-ζ-f CWT, y
+

max=25

k-v
2
-f int., y

+
max=1.2

0 0.5 1
0

0.5

1

1.5

y/
h

0 0.5 1 0 0.5 1 0 0.5 1
0

0.5

1

1.5

x/h = 2.1 x/h = 2.9 x/h = 3.7

x/h = 5.3 x/h = 6.6

x/h = 4.5

x/h = 6.0 x/h = 7.4

U/Ub

(a)

0 5 10 15 20
x/h

0

0.001

0.002

0.003

0.004

S
t

Exp. Vogel&Eaton, 1985

k-ζ-f, int., y
+

max=1.2

k-ζ-f, CWT, y
+

max=25

k-v
2
f, int., y

+
max=1.2

(b)

Figure 10: Velocity profiles at different dis-
tances behind a backward facing step (a) and
Stanton number distribution along the heated
wall (b). Symbols: experiments of Vogel and
Eaton (1985). Full line: ζ-f model with inte-
gration to the wall. Dashed line: ζ-f model
with CWT. Dashed-dot-dash line: υ2-f model
with integration to the wall.
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