Transient Radiation Transfer in Finite Media using Pomraning-Eddington Approximation
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ABSTRACT: The equation of transient radiation transfer with linear anisotropic scattering in finite
plane-parallel media is studied. Pomraning-Eddington approximation is used to solve the problem. Nu-
merical results for reflectivity and transmissivity at different times are done for an isotropic medium
which is assumed to have specular-reflecting boundaries. Weight functions are introduced to force the

boundary conditions to be fulfilled.
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1 Introduction

The studying and solving the time-dependent
transport problems have a very wide interesting
applications such as in reactor physics and astro-
physics. The propagation of a laser pulse through a
scattering and absorbing medium is of importance
in many fields, including lidar and optical commu-
nication [1], remote sensing [2], computer tomogra-
phy [3] and photodynamic therapy [4]. One of the
very interesting applications of the time-dependent
transport equation is the heat transfer. Heat trans-
fer in dielectric materials and semiconductors is
predominantly by phonons, which are the quanta
of crystal vibrational energy as the photons is the
quanta of the radiation. Transient heat transport
by phonons is of vital importance in several techno-
logical applications. For example, microelectronics
devices are composed mainly of thin films of semi-
conductors such as Si or GaAs, of dielectrics such
as Si0 and SizNy ,and of metals [5].

Several approaches have been proposed to
solve the one-dimensional time-dependent trans-
port equation in finite slabs, such as, the multiple-
collision [6], discrete ordinates and semi-analytical
numerical [7] methods.

In this work, we are focusing our attention
to solve the monoenergetic time-dependent radi-
ation transfer equation in a finite slab medium.
The medium is considered to have specular-
reflecting boundaries, and an externally-incident
flux which assumed to be angular-dependent.
The time-dependent problem is transformed into
a stationary-like problem, and then Pomraning-
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Eddington approximation is used to solve it. Af-
ter obtaining the radiation intensity, we can com-
pute some physical quantities such as reflectivity
and transmissivity. A weight function is introduced
to force the assumed specular-reflecting boundary
conditions to be fulfilled. For the sake of compari-
son, two different weight functions are used.

2 Analysis

The time-dependent, monoenergetic, radiation
transfer equation with anisotropic scattering takes
the form [§]
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where

N(t, z, p) is the radiation intensity with tempo-
ral variable ¢, geometrical space variable z, and the
angular variable u, v is the radiation speed, o(z) is
the total cross-section, o4(z) is the scattering cross-
section, and (¢, z) is the internal energy source.
P(u, 1) is the anisotropic scattering phase function
which is given by [9]
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where P,(u) is the Legendre polynomial func-
tions, with Py(u) =1, and ag = 1.



It is convenient to write Eq.(1) in terms of the
optical depth space variable

x(z):/za(z)dz , 0<z<d (3)
0
where the optical thickness d of the medium is
b
d(b) = / o(z)dz (4)
0

In terms of x Eq.(1) becomes

l +ua +1]I(t,x,u):
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where
I(t,z,n) = N(t,z,p), (6.a)
u = vo, w=o0s/0 (6.b)
S(t,z) = Q(t,z)/o (6.c)

Equation (5) is assumed to subject to boundary
conditions

I(t,0, )
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where I'(p) is the angular-dependent externally-
incident flux on the left boundary, and p; is the
specular reflectivity of the boundaries, (i = 1,2).
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where E(() is the radiant energy, and F(()
is the net radiant heat flux, which are defined

by
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For solving this problem we use Pomraning-
Eddington approximation, where the intensity as-
sumed as[11]

1(C, 1) = B(G ) E(C) + O(C ) F(C) (13)

where (¢, 1) and O(C, p1) are even and odd func-
tions in p and are slowly varying functions in (
which are normalized as
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Substituting Eq.(13) in Eq.(11), integrating over
p € [—1,1], and using Eqgs.(14, 15) one gets

dE(Q) | dF(Q)
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In the same way, multiplying of Eq.(11) by x and
integrate over u € [—1,1] gives

+aE(()=0 (16)
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For linear approximation of the anisotropic scat-
tering phase function, Eq.(2) becomes

Pp, ) =1+ apd (10)

where a is the anisotropy parameter which is
fi]ven in terms of Legendre polynomial coefficients
9

Considering the source-free problem and using
Eq.(10) in Eq.(9), we have
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Egs.(16) and (17) lead to the second-order differ-
ential equation satisfied by E(()

1-0) 22 (a9 L s amic) =0
(20)
which has the solution
E() = Ae™™ ¢ 4 Be ™" ¢ (21)
Moreover,
F(Q) =~ Ae ¥ 4y Be ™ ¢ (22)
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The constants A & B are to be determined

Even and Odd functions can be obtained by sub-
stituting Eq.(13) in Eq.(11), separating the even
and odd terms of the resultant equation, and then
solve for the even and odd functions, we get
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where R is defined as [13]
_ 1 dE(Q) a
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The two unknown parameters R and D can be
determined by solving the two coupled transcen-
dental equations which obtained by substituting
Eq.(25) in Egs.(14) and (19).

Finally, we can obtain the solution as
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To determine the constants A and B , a weight
function W () is introduced in order to force the
boundary conditions to be fulfilled, as

[ () 10,0, = 91100, ) | =y (33.2)
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Using Eq.(31) we obtain
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3 Numerical Results and Calculations

In this section numerical calculations are done to
calculate the reflectivity R, and transmissivity 7,
for a slab of thickness d, which are defined as

1
RT:/ dppl(t,0,—p) at t=0, >0 (37)
0

1
Tr:/ dupl(t,d,p)  at >0, p>0 (38)
0

Using Eq.(31) in Egs.(37) and (38) one gets

R, =AJ] + BJ; (39)
and
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where
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The angular-dependent externally-incident flux
['(u) is assumed to have the form

IN(D)

Two different weight functions are suggested to

=, (43)

do the calculations, namely [11,12]



Wilp) = n
W) =

(44)

o H 5 (45)

1+ 3 u)

Table (1) shows the data of the reflectivity R, for
four groups of [ and pj, with varying the thickness
of the medium d at different instants ¢ . Table (2)
gives the results for transmissivity 7, for the same
parameters as in table(1). Table(3) gives the results
of reflectivity R, and transmissivity 7, for [ = 1
and pj = 0.5 with varying the time ¢ for different
values of the thickness d.

4  Conclusion

The reflectivity and transmissivity at the bound-
aries of a finite slab medium are calculated for the
time-dependent monoenergetic radiation transfer
equation with linear anisotropic scattering. The
medium is considered to have specular-reflecting
boundaries, and the externally-incident flux is as-
sumed to be angular-dependent. A weight func-
tion is introduced to force the assumed specular-
reflecting boundary conditions to be fulfilled. Be-
cause of the lake of the corresponding data in the
literatures we use two different weight functions for
the sake of comparison which give good agreement
with each other.

On the other hand, the above analysis of the time
dependent radiation transfer gives a good descrip-
tion for the transient heat transfer, where the tran-
sient heat transfer is described by the equation of
phonon radiative transfer (EPRT) [5]

10 0 1 1
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46

which is a simple form of radiative transfer e(glua,2
tion with isotropic scattering and the cross-section
= %, where v7 g is the effective mean free and
Tg is the relaxation time.

In future work we will use this analysis to cal-
culate the temperature of a finite thin medium at
different times.
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Table(1) The reflectivity R, for a medium of transparent left boundary for w = 0.9

(0,0)

(1,0)

(2,0.25)

(2,05)

(1, p3)
d

Wi (p)

Wa ()

Wi (w)

Wa(p)

Wi ()

Wa ()

Wi (w)

Wa ()

0.44746
0.44897
0.46875
0.49695
0.49983

0.43342
0.43364
0.43646
0.44027
0.44064

0.29830
0.29931
0.31250
0.33130
0.33322

t=20.0
0.30701

0.30716
0.30916
0.31186
0.31212

0.22171
0.22229
0.23095
0.24775
0.24987

0.23805
0.23814
0.23951
0.24204
0.24235

0.21968
0.22006
0.22648
0.24615
0.24977

0.23771
0.23777
0.23880
0.24180
0.24233

SO oOoOoO

0.44914
0.45077
0.47115
0.49735
0.49985

0.43367
0.43391
0.43679
0.44032
0.44064

0.29943
0.30051
0.31410
0.33157
0.33323

t=0.
0.30718
0.30735
0.30939
0.31189
0.31212

1
0.22236
0.22300
0.23215
0.24804
0.24989

0.23815
0.23826
0.23970
0.24208
0.24235

0.22010
0.22052
0.22751
0.24662
0.24980

0.23778
0.23785
0.23896
0.24187
0.24233

TRV OO  |TTWH OO
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SOoOoOoOH

0.49699
0.49735
0.49926
0.49996
0.49999

0.44027
0.44032
0.44057
0.44065
0.44066

0.33133
0.33157
0.33284
0.33331
0.33333

t=3.0
0.31186

0.31189
0.31207
0.31213
0.31214

0.24778
0.24804
0.24945
0.24997
0.25000

0.24204
0.24208
0.24228
0.24236
0.24237

0.24620
0.24662
0.24902
0.24995
0.25000

0.24181
0.24187
0.24222
0.24236
0.24237

Table(2) The transmissivity T, for a medium of transparent left boundary for w = 0.9

(1, p3)

(0,0)

(1,0)

(2,0.25)

(2,0.5)

d

0.01
0.10

Wi ()

Wa ()

Wi (1)

Wa (i)

Wi(p)

Wa(p)

Wi ()

Wa (1)

0.49799
0.47951
0.26915
0.02165
0.00101

0.48295
0.46420
0.25463
0.01984
0.00093

0.33199
0.31967
0.17943
0.01443
0.00068

t=0.0
0.34209

0.32881
0.18036
0.01405
0.00066

0.24922
0.24197
0.15248
0.01486
0.00071

0.26789
0.25978
0.16085
0.01516
0.00072

0.24944
0.24422
0.17588
0.02371
0.00119

0.27016
0.26434
0.18842
0.02462
0.00122
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0.47741
0.45812
0.24608
0.01865
0.00087

0.46208
0.44255
0.23216
0.01708
0.00079

0.31827
0.30541
0.16405
0.01243
0.00058

t = 0.
0.32730
0.31348
0.16445
0.01210
0.00056

1
0.24114
0.23350
0.14151
0.01284
0.00061

0.25886
0.25032
0.14892
0.01309
0.00062

0.24362
0.23811
0.16652
0.02062
0.00102

0.26368
0.25754
0.17810
0.02140
0.00105

RO | T OO
coo~Oo |looo~O

SO oOoO

0.02133
0.01865
0.00475
0.00022

9% 1076

0.01954
0.01708
0.00434
0.00020

9% 106

0.01422
0.01243
0.00316
0.00014

6x10~6

t = 3.
0.01384
0.01210
0.00307
0.00014

6x10°6

3.0

0.01465
0.01284
0.00332
0.00015

7x1076

0.01495
0.01309
0.00337
0.00015

7x10~6

0.02338
0.02062
0.00550
0.00025
1x107°

0.02428
0.02140
0.00569
0.00026
1x107°




Table(3) The reflectivity R, and The transmissivity T, for isotropic scattering
with [ =1 and pj = 0.5

. R, T, R, T,
Wip) Wolp) — Wi(p) Wa(w) Wip) Wolp) Wi(p) Wap)

w=20.8 w=0.95
d=0.01
0.24998 0.26103 0.33246 0.34782 0.31350 0.31363 0.33264 0.34801
0.25067 0.26144 0.32363 0.33853 0.31383 0.32386 0.32542 0.34014
0.25445 0.26366 0.28669 0.29960 0.31559 0.32625 0.29034 0.30200
0.26225 0.26822 0.23543 0.24554 0.31880 0.32757 0.23207 0.23929
0.33214 0.30834 0.00188 0.00193 0.33322 0.32782 0.00149 0.00148

d=0.1
0.25060 0.26140 0.32452 0.33946 0.31380 0.31363 0.32617 0.34096
0.25137 0.26185 0.31557 0.33003 0.31417 0.32336 0.31842 0.33251
0.25558 0.26432 0.27792 0.29035 0.31608 0.32587 0.28099 0.29188
0.26409 0.26930 0.22554 0.23511 0.31948 0.32732 0.22021 0.22663
0.33228 0.30842 0.00163 0.00167 0.33323 0.32760 0.00130 0.00129

d=1.0
0.26205 0.26811 0.23652 0.24669 0.31872 0.31358 0.23337 0.24067
0.26409 0.26930 0.22554 0.23511 0.31948 0.31825 0.22021 0.22663
0.27391 0.27502 0.17968 0.18685 0.32271 0.32101 0.16565 0.16899
0.28898 0.28373 0.12222 0.12661 0.32656 0.32336 0.10293 0.10392
0.33304 0.30885 0.00039 0.00039 0.33331 0.32391 0.00033 0.00033

d=3.0
0.31611 0.29927 0.03940 0.04054 0.33131 0.31355 0.02925 0.02916
0.31801 0.30034 0.03442 0.03540 0.33157 0.31389 0.02543 0.02534
0.32397 0.30373 0.01953 0.02005 0.33232 0.31424 0.01432 0.01424
0.32848 0.30628 0.00921 0.00945 0.33284 0.31476 0.00684 0.00679
0.33332 0.30901 0.00002 0.00002 0.33333 0.31494 0.00002 0.00002
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d=5.0
0.33212 0.30833 0.00191 0.00196 0.33322 0.31355 0.00151 0.00150

0.33228 0.30842 0.00163 0.00167 0.33323 0.31357 0.00130 0.00129
0.33274 0.30868 0.00086 0.00088 0.33328 0.31359 0.00071 0.00070
0.33304 0.30885 0.00039 0.00039 0.33331 0.31362 0.00033 0.00033

0.33333  0.30902 6x10~7 6x10~7 0.33333 0.31363 7x107 7x1077

oo o
oo




