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Abstract: - An eigenvalue analysis of random genetic drift in populations of size two produces a geometrically 
declining heterozygosity  with a rate different from that predicted by the Wright-Fisher model.  This is posited as 
the reason that actual experiments do not match the Wright-Fisher model prediction. 
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1  Introduction 
Standard mathematical models for random genetic 
drift in finite populations like the Wright-Fisher model 
do not effectively mimic results from actual 
experiments.  The usual explanation for this 
discrepancy is that the experiments never exactly 
match the assumptions of simple random genetic drift.  
The thesis of this paper is that the standard 
mathematical model is what fails to match the 
assumptions of the random genetic drift experiment.  
Specifically it ignores the restricted choice of 
gametes—one egg and one sperm. 
 
2 Assumptions for Random Genetic 
Drift in Finite Populations 
From each generation N diploid individuals are chosen 
to be parents for the next generation.  Reproduction is 
sexual with equal numbers of males and females.  For 
simplicity we follow only one gene with two alleles.  
Both of the totally homozygous states are stable 
absorbing equilibria.  This is true in both the standard 
model and in the experimental results.  The 
discrepancy lies in the rate of loss of heterozygosity. 
 
3  The Standard Model 
The standard model has the N diploid individuals 
producing an infinite pool of gametes whose allele 
frequencies match those of the parent group, say p for 
the ‘A’ allele and q=1-p for ‘a’ allele.  The offspring 
are then produced with frequencies p2 for genotype 
AA, 2pq for genotype Aa, and q2 for genotype aa.  

From this group another N individuals are chosen 
at random to be parents for the next generation, 
etcetera. {See Chapter 7 of reference [3], which comes 
from [1] and [2]} 
 
The problem with the Standard Model is that it fails to 
account for the assumption of sexual reproduction.  
That assumption leads us to two separate gamete 
pools—one for eggs and one for sperm. 
 
3.1  An Example Illustrating the Problem with 
the Standard Model 
Consider the case where N=2 and p=¾.  The standard 
model predicts progeny genotype frequencies of 
p2=9/16 for AA, 2pq=3/8 for Aa, and 1/16 for aa.  Thus 
the random draw for the next parent group is (9/16)2 = 
81/256 for AA AA, 2(9/16)(3/8) = 27/64 for AA Aa, 
(3/8)2 = 9/64 for Aa Aa, 2(9/16)(1/16) = 9/128 for AA 
aa, 2(3/8)(1/16) = 3/64 for Aa aa, and (1/16)2 = 1/256 
for aa aa. 
 
This might seem reasonable until we realize that N=2 
means one male and one female and p=¾ means 
exactly genotypes AA and Aa.  For every progeny the 
gamete from the AA parent must be A and the gamete 
from the other is equally likely to be A or a.  Thus the 
correct progeny genotype frequencies are ½ for AA, ½ 
for Aa, and zero for aa.  The correct frequencies for 
the next generation parent group are (½)²=¼ for AA 
AA, 2(½)(½) = ½ for AA Aa, (½)(½) = ¼ for Aa Aa, 
zero for AA aa, zero for Aa aa, and zero for aa aa.  



This is clearly different from the standard model 
predicted frequencies. 
 
3.2  What to Do 
It seems obvious to the author that correcting the 
model for two separate gamete pools is the first step to 
resolving differences between the mathematical model 
and the experimental results. 

 
4  Corrected Model for N=2 
For N=2 we have the six states: AA AA, AA Aa, AA aa, 
Aa Aa, Aa aa, and aa aa.  Let state i have frequency xi 
and heterozygosity Hi.  The state diagram showing 
transition probabilities is given below. 

 
Fig. 1 State Diagram of Transition Probabilities. 
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The state vector at generation k is 
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And from the state diagram above we get the 
stochastic transition matrix: 
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AA AA 
H1 = 0 
x1 

AA aa 
H3 = 0 
x3 

aa aa 
H6 = 0 
x6 

AA Aa 
H2 = ½ 
x2 

Aa aa 
H5 = ½ 
x5 

Aa Aa 
H4 = 1 
x4 



The transition to the next generation is 
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Let the heterozygosity vector be 
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Then the heterozygosity at generation k is 
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4.1 Preservation of Allele Frequencies 
We can easily verify that allele frequency is 
preserved.  The vector for the ‘A’ allele 

frequency by state is 
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the vector for the ‘a’ allele is 
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Then the allele frequencies for a given state 

vector x are xpxp
T

=• and xqxq
T

=• .  

Notice that 
TT

pp =Φ and 
TT

qq =Φ  so 
that the allele frequency at generation k will 
equal the initial allele frequency: 

00 xpxpxp
TkT

k

T
=Φ= . 

 
4.2  Behavior of the Corrected Model 
for N=2 
The behavior of this model can be 
understood from an eigenvalue analysis.  
The eigenvectors for the matrix Φ are those 
state vectors for which Φ will change their 
magnitude but leave them in the same 
direction.  The magnitude multiple change is 
called the eigenvalue.  Specifically if Φ has 
eigenvectors v1, v2, …, v6 with 
corresponding eigenvalues λ1, λ2, …, λ6 
then Φvi = λivi.  Arrange the eigenvalues in 
decreasing order of magnitude and express 
the initial state in terms of the eigenvectors 
and we have 
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For this Φ--λ1 = λ2 = 1 (v1 and v2 are the 
pure homozygous states AA AA and aa aa), 
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=λ , λ4 = 0.5, 

309.0
4

51
5 −≈

−
=λ , and λ6  = 0.25.  

Observe that λ4
k, λ5

k, and λ6
k are going to 

zero faster than λ3
k.  This means that if a3≠0 

and k is larger than ten then the first three 
eigenvectors will be the dominant 
components: 
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To predict the heterozygosity keep in mind 
that v1 and v2 are pure homozygous, i.e. HT 
v1 = HT v1 = 0.  So as k gets larger the 
heterozygosity is 
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[In the N=2 case this is true even sooner 
since it turns out that HTv4= HTv6=0.] 
 
4.3 Conclusion for N=2 Model 
Thus the heterozygosity declines 
geometrically with the rate factor 0.809.  For 
the standard model N2113 −=λ  or .75 for 
N=2.  The heterozygosity behavior in the 
corrected model corresponds to N ≈ 2.6 in 
the standard model.  This is a significant 
difference that can affect the interpretation 
of experimental results.  In particular if a 

species of termites is in actuality totally 
monogamous with mates always chosen 
from siblings, i.e. the N=2 case discussed 
here, then an analysis using the standard 
Wright-Fisher model (which expects a 
heterozygoisity loss rate of 0.75) would 
underestimate the actual inbreeding [4]. 
 
5 Appendix 
This appendix contains the specific 
components for the eigenvectors (vi’s), the 
coefficients for the heterozygous starting 
state (ai’s for Aa Aa), and results for the first 
10 generations starting from the 
heterozygous state. 

 
  Table 1 Eigenvalues/Eigenvectors with Heterozygosity for N=2 
 
 λ1=1 λ2=1 λ3=(1+√5)/4 λ4=1/2 λ5=(1-√5)/4 λ6=1/4 
 v1 v2 v3 v4 v5 v6 
AA AA 1 0 -11-5√5 1 -11+5√5 1 
AA Aa 0 0 4+4√5 -2 4-4√5 -4 
AA aa 0 0 -2+2√5 0 -2-2√5 2 
Aa Aa 0 0 16 0 16 4 
Aa aa 0 0 4+4√5 2 4-4√5 -4 
aa aa 0 1 -11-5√5 -1 -11+5√5 1 
HT vi 0 0 20+4√5 0 20-4√5 0 
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 so the heterozygosity at generation k 
starting from state Aa Aa should be 
 (1/40)[( λ3)k(20+4√5)+(λ5)k(20-4√5)] ≈ 
0.7236(0.809k)+0.2764(-0.309)k.  Which is 
what we see in the Table 2 below showing 
the results for the first 10 generations. 



  
  Table 2  State Frequency by Generation Starting from Aa Aa 

t = 0 1 2 3 4 5 6 7 8 9 
AA AA 0 .0625 .1406 .2070 .2627 .3079 .3445 .3742 .3982 .4177
AA Aa 0 .25 .1875 .1719 .1367 .1123 .0906 .0734 .0594 .0480
AA aa 0 .125 .03125 .0391 .0254 .0220 .0172 .0141 .0113 .0092
AaAa 1 .25 .3125 .2031 .1758 .1377 .1125 .0906 .0734 .0594
Aa aa 0 .25 .1875 .1719 .1367 .1123 .0906 .0734 .0594 .0480
aa aa 0 .0625 .1406 .2070 .2627 .3079 .3445 .3742 .3982 .4177

Ht 1 .5 .5 .375 .3125 .25 .2031 .1641 .1328 .1074
Ht/Ht-1  .5 1 .75 .8333 .8 .8124 .8080 .8093 .8087

 
Notice that Ht/Ht-1 will tend to λ3.  In fact for 
larger N this is an appropriate method for 
approximating λ3, the geometric 
heterozygosity loss rate. 
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