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Abstract: - Scale-invariant forms of mass, energy, and linear momentum conservation equations in chemically -
reactive fields are described.  The modified equation of motion is then solved for the classical problems of laminar 
flow near a rotating disk.  The predicted velocity profiles obtained from analytical solutions are shown to be in 
excellent agreement with the exact numerical calculations of Cochran based on the von Kármán classical theory. 
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1 Introduction 
The universality of turbulent phenomena from 
stochastic quantum fields to classical hydrodynamic 
fields resulted in recent introduction of a scale-
invariant model of statistical mechanics and its 
application to the field of thermodynamics [4].  The 
implications of the model to the study of transport 
phenomena and invariant forms of conservation 
equations have also been addressed [5, 6].  In the 
present study, following the classical theory of von 
Kármán, the modified equation of motion is solved for 
the problem of laminar flow near a rotating disk.  The 
predicted velocity profiles are found to be in excellent 
agreement with the numerical calculations of the 
classical theory. 
 
2 Scale-Invariant Form of the 
Conservation Equations for Reactive 
Fields 
Following the classical methods [1-3], the invariant 
definitions of the density ρβ

β

, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given 
as [4]  
 

ρ n m m f duβ β β β β= = ∫    ,     uβ = vβ−1 (1) 
 

1m f d−
β β β β β β= ρ ∫v u u

      
    ,      wβ = vβ+1  (2) 

 
Also, the invariant definitions of the peculiar and the 
diffusion velocities are given as [4] 
 

β β β′ = −V u v    ,     1β β β β+′= − =V v w V  (3) 
 

    Next, following the classical methods [1-3], the 
scale-invariant forms of mass, thermal energy, and 
linear momentum conservation equations at scale β 
are given as [5, 6] 
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involving the volumetric density of thermal energy 
ρ hβ β βε =  and linear momentum ρβ β β=p v .  Also, 

βΩ  is the chemical reaction rate and hβ is the absolute 
enthalpy. 
    The local velocity βv  in (4)-(6) is expressed as the 

sum of convective  and diffusive β β= 〈 〉w v βV  
velocities [5] 
 
 

gβ β β= +v w V    ,    g D ln( )β β β= − ρV ∇  (7a) 
 

tgβ β β= +v w V    ,    tg ln( )β β β= −α εV ∇  (7b) 
 

hgβ β β= +v w V   ,    hg ln( )β β β= −νV ∇ p  (7c) 
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where (Vβg, Vβtg, Vβhg) are respectively the diffusive, 
the thermo-diffusive, the linear hydro-diffusiv 
velocities.  For unity Schmidt and Prandtl  numbers, 
one may express 
 

tg g tβ β= +V V Vβ β

β βv

  ,      t ln(h )β β= −αV ∇   (8a) 
 

hg g hβ β= +V V V     ,    h ln( )β β= −νV ∇  (8b) 
 

that involve the thermal Vβt, and linear hydrodynamic 
Vβh diffusion velocities [5].  Since for an ideal gas hβ 
= cpβTβ, when cpβ is constant and T = Tβ, Eq.(8a) 
reduces to the Fourier law of heat conduction  
 

tρ h κ Τβ β β β β= = −q V ∇  (9) 
 

where βκ  and p/( c )β β β βα = κ ρ  are the thermal 
conductivity and diffusivity.  Similarly, (8b) may be 
identified as the shear stress associated with 
diffusional flux of linear momentum and expressed by 
the generalized Newton law of viscosity [5] 
 

ij j ij h j iρ µ /β β β β β β= = − ∂τ v V v x∂  (10) 
 

Substitutions from (7a)-(7c) into (4)-(6), neglecting 
cross-diffusion terms and assuming constant 
transport coefficients with Sc , result in [5, 
6]  

Pr 1β β= =
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    In the first and second parts of Eqs.(12)-(13), the 
gravitational versus the inertial contributions to the 

change in energy and momentum density are 
apparent.  Substitutions from (11) into (12)-(13) 
result in the invariant forms of conservation 
equations [6] 
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∂
+ w .∇  (14) 

 

2
p

T
T T h /( c

t
β )β β β β β β β β

∂
− α ∇ = − Ω ρ

∂
+ w .∇

 

    
(15) 

2 /
t
β

β β β β β β β

∂
− ν ∇ = − Ω ρ

∂
v
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    An important feature of the modified equation of 
motion (16), that is similar to the Smoluchowski 
equation [7], is that it involves a convective velocity 

βw that is different from the local fluid velocity βv . 

Because the convective velocity is not locally-
defined it cannot occur in differential form within the 
conservation equations [5].  This is because one 
cannot differentiate a function that is not locally, i.e. 
differentially, defined.  To determine

βw

βw , one needs 

to go to the next higher scale (β+1) where βw = 

1β+v becomes a local velocity.  However, at this new 
scale one encounters yet another convective velocity 

1β+w which is not known, requiring consideration of 
the higher scale (β+2).  This unending chain 
constitutes the closure problem of the statistical 
theory of turbulence discussed earlier [5]. 
 
3 A Modified Theory of Laminar Flow 
Near a Rotating Disk 
    As examples of exact solutions of the modified 
equation of motion (16), the classical Blasius problem 
[2] of laminar flow over a flat plate [8], laminar 
boundary layer flow adjacent to an axisymmetric 
stagnation-point [9], laminar free convection on 
vertical hot plate [10], and laminar axi-symmetric and 
two-dimensional jets [11] have been investigated. In 
the present study, the modified equation of motion is 
solved for the classical problem of laminar flow near a 
rotating disk investigated by von Kármán [2, 12], 
Cochran [13], and Theodorsen and Regier [14].  The 
schematic diagram of the flow field and the axi-
symmetric cylindrical coordinates is shown in Fig.1.   



 3

 

θ

r

z

ωROTATING 
    DISK  

 
   Fig.1  Laminar flow near a rotating disk. 
 
    The local axial, azimuthal, and radial velocities 

 along the corresponding coordinates 
 are made dimensionless in the forms 

z( θ′ ′ ′v v v, , )r

′( ′ θz r, , )

z r z r z r z r( (θ θ′ ′ ′ ′ ′ νωw w v v v w w v v v, , , , ) = , , , , )/  
 

rr
/
′

=
ν ω

  , 
z
/
′

ς =
ν ω

  

 
where ω is the known angular frequency of the disk 
and ν is the kinematic viscosity.   
    The steady dimensionless forms of the modified 
equation of motion (16) and the continuity equation 
(4) in axi-symmetric cylindrical coordinate for an 
incompressible fluid, under weak swirl, small 
azimuthal convective velocity w'θ = 0, and in the 
absence of chemical reactions Ω = 0 reduce to 
 
 

2 2
z z z z

r z 2 2

1
r r r r

∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ς ∂ ∂ ∂
v v v vw + w z

ς
v

     

  (17) 
    

2 2
r r r r r

r z 2 2

1
r r r r r

∂ ∂ ∂ ∂ ∂
= + − +

∂ ∂ς ∂ ∂ ∂
v v v v vw + w r

2ς
v

 

    (18) 
    

2 2

r z 2 2

1
r r r r r
θ θ θ θ θ∂ ∂ ∂ ∂ ∂

= + − +
∂ ∂ς ∂ ∂ ∂
v v v v vw + w 2

θ

ς
v

 

    

   (19) 

r r z 0
r r

∂ ∂
=

∂ ∂ς
v v v+ +  (20) 

that are subject to the boundary conditions 
 
ζ = 0          vr = vz = vθ − r = 0 (21) 
  
ς → ∞       vr = vθ = 0 (22) 
 

Following von Kármán [2, 13], one assumes the 
similarity solutions in the form 
 
vr = r F(ζ) (23) 
 
vθ = r G(ζ) (24) 
 
vz =  H(ζ) (25) 
 
    To solve the system (17)-(22), it is first noted that 
the rotation of the disk results in an axial flow towards 
the disk to replace the fluid being thrown radially 
outward by the centrifugal forces.   Therefore, the 
entire flow field will be divided into two 
distinguishable zones.  (1) The outer zone with flow 
that is somewhat similar to the inviscid part of the 
classical stagnation point flow. (2) The relatively 
thinner inner zone that has a flow field somewhat 
similar to that within viscous boundary layer as 
schematically shown in Fig.2.  The flow fields in these 
separate zones are similar to those discussed 
elsewhere in connection to stagnation-point flow in 
finite jets [9].  In the following the solution of the flow 
fields in the outer and the inner zones are discussed 
separately. 
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Fig.2  Schematic diagram of the inner and outer 
zones and outer convective velocity profile for flow 
near a rotating disk. 
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    For the classical stagnation-point flow [2, 7], the 
radial and axial convective velocities  and rw′ zw′  are 
[2, 7] 
 

rw r′ = Γ ′ ) ,  (26) zw 2 (z / 2′ ′ ′= − Γ − δ
 

where Γ is the velocity gradient and 
 

/′δ = ν Γ  (27) 
 
is the viscous hydrodynamic length scale.  The 
dimensionless form of (26) will be  
 

rw = χ        ,        (28) zw 2( 1/= − ξ − 2)
 

where w w /′= νΓ  and /( , ) (r , z ) / ν Γ′ ′χ ξ = .  
According to (26), the axial position where the 
convective velocity vanishes  is displaced by 

 because of the presence of viscous boundary 
layer in accordance with the classical theory [2]. 

zw′ = 0

/ 2′δ

    For the rotating disk flow, on the other hand, the 
viscous hydrodynamic length scale δ is defined as 
 

/δ = ν ω  (29) 
 

Hence, the angular frequency ω of the rotating disk 
flow in (27) will play the same role as the strain rate Γ 
of the forced-convection stagnation-point flow in (26) 
such that .  However, because of the passive 
nature of the flow in the outer region of the rotating 
disk, suction induced rather than forced-convection, 
the velocity gradient in the outer zone (Fig.2) will be 
smaller than that of the standard stagnation-point flow 
in (26).  Therefore, the convective velocity for the 
outer region of the rotating disk flow will be taken as 

⇔ Γω

 

row r /′ ′= ω 4 / 2

4 2

    ,        (30) zow (z )′ ′= −ω − δ
 

corresponding to a factor of 4 reduction in strain rates 
.  The reduction of the strain rate in (30) is 

like stretching of the axial coordinate, and hence the 
thickness of the entire viscous flow field, by a factor 
of 4.  According to (30), the position of the stagnation 
plane where the outer convective velocity vanishes  

= 0 is displaced by the thickness δ as shown in 
Fig.2.  The dimensionless form of the convective 
velocity in the outer zone is obtained from (30) as 

/ 4Γ = ω

zow′

 

row r /=        ,        (31) zow ( 1) /= − ς −

    The flow field in the outer zone is now investigated 
by substitutions from (23), (25), and (31) into (17), 
(19), and (20) to obtain 
 

o
1H ( 1)H
2

′′ ′o 0+ ς − =  (32) 
 

o
1G ( 1)G
2

′′ ′o 0+ ς − =  (33) 
 

o o2F H 0′+ =   
 (34) 
 

subject to the boundary conditions 
 

ζ = 1/4  oH 0=  
ζ = 1  o o oF G a 0′ = − =  (35) 
ς → ∞   o oF G 0= =  

 

where subscript (o) refers to the outer zone (Fig.2).  
The constant ao will be determined from matching to 
the inner solution to be discussed in the following.  
Also, the boundary condition at ζ = 1/4 may be 
anticipated on the basis of the fact that the outer 
convective velocity zow′  also vanishes at this point. 
    The solution of (32) and (35) is 
 

2
o

1/ 4

H exp[ ( / 2 1/ 2) ]d
2A

ςπ
= − − ς −∫ ς  (36) 

 

that by (25) gives the axial velocity in the outer zone 

2
zo

1/ 4

v exp[ ( / 2 1/ 2) ]d
2A

ςπ
= − − ς −∫ ς  (37) 

where 
 

2

1/ 4

A exp[ ( / 2 1/ 2) ]d 2.4887
∞

= − ς − ς ≈∫  (38) 

 

The factor ( / 2− π ) comes from matching with the 
error-function type solutions of the inner zone to be 
discussed in the following.  The solution (37) gives 
the axial velocity in the far field away from the disk  
 

ς → ∞           zov 0.886
2
π

= − = −  (39) 
 

that is in accordance with the exact numerical 
calculations of Cochran [2, 13].  The identification of 
the numerically determined value of the limit −0.886 
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[13] with ( /− π 2)  is a mathematical evidence that 
error-function type solutions are indeed intrinsic to 
this problem.  On the other hand, the behavior of the 
outer axial velocity (37) close to the edge of the 
"boundary layer" becomes  
 

1ς →  zodv
d 2

π
= −

ς A
 (40) 

 

The slope in (40) will be matched with that within the 
inner zone (58) to be discussed later. 
   The radial velocity in the outer zone is considered 
next by substituting (36) into the continuity equation 
(34) to obtain 
 

2
oF exp[ ( / 2 1/ 2) ]

4A
π

= − ς −  (41) 
 

that by (23) gives 
 

2
ro

rv exp[ ( / 2 1/ 2) ]
4A

π
= − ς −  (42) 

 

The limits of the above solution in the far field and 
near the edge of the inner zone are 
 

ς → ∞  rov ( ) 0∞ =  (43) 
 

1ς →  ro
rv (0)
4A

π
=  (44) 

 

that satisfy (35).  The radial velocity for the inner zone 
(56) to be discussed in the following must match the 
result (44).  
    Next, the azimuthal velocity is obtained from 
solution of (33) and (35) as 
 

o oG a [1 erf ( / 2 1/ 2)= − ς − ]

r

 (45) 
 
that by (24) gives 
 

o ov ra [1 erf ( / 2 1/ 2)]θ = − ς −  (46) 
 

The constant ao is determined from matching of the 
value and the slope of vθ at the boundary between the 
inner and the outer zones ζ = 1, expressed by (61)-
(62) in the following, and found to be 
 

oa 0.639  (47) 
 

    The convective velocity within the inner zone will 
be similar to the stagnation-point flow given in (28).  

However, the factor of 1/4 reduction in strain rate 
introduced in (29) is now removed leading to  
 

ri iw′ ′= ω         ,   zi iw 2′ ′= − ως  (48a) 
 

However, the increase of the strain rate by a factor of 
four results in reduction of the thickness of the viscous 
layer (29) by a factor of 2 such that  
 

i / 2δ = δ          ,     i 2ς = ς  (48b) 
 
Substituting from (23)-(25), and (48a,b) into (18), and 
(20) and invoking the "boundary layer" assumption 
 

r rvv
r

∂ ∂
∂ ∂ς

 (49) 

 

result in equations 
 

i iF 8 F 0′′ ′+ ς =  (50) 
 

i i2F H 0′+ =  (51) 
that are subject to the boundary conditions 
 

ζ = 0             Fi = Hi =  0  (52) 
 

1ς →            i iF H
4A 2A

π π′ 0− = + =   (53) 

 

The result (53) is obtained by the requirement of 
matching with the outer solutions in (44). 
    The solution of (50), and (52)-(53) is 
 

iF erf (2
4A

π )= ς  (54) 

 

that by (23) gives the radial velocity in the inner zone 
as 
 

ri
rv erf (
4A

π 2 )= ς  (55) 
 

As one approaches the edge of the inner 
zone, iς → ∞ , the radial velocity (55) becomes 
 

1ς →             ri
rv ( )
4A

π
∞ =  (56) 

 

that matches the outer solution (44). 
 

    Next, the solution of (52) and (53) after  
substitution from (54) is obtained as 
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i
0

H erf (2
2A

ςπ
= − ς ς∫ )d

 
(57) 

 

that by (25) gives the axial velocity in the inner zone  
 

zi
0

v erf (2
2A

ςπ
= − ς ς∫ )d

i

i )

1

 (58) 

The gradient of (58) at the edge of the inner zone 
matches the slope of the outer solution in (40) as 
required. 
 

    Finally, for the azimuthal velocity within the thin 
inner zone we assume a linear profile 
 

iG 1 a= − ς  (59) 
 

that by (24) leads to  
 

iv r(1 aθ = − ς  (60) 
 
The constant ai is determined from matching of 
the value and the slope of vθ at ζ = 1  
 

o i1[v ] [v ]θ θς= ς==  (61) 
 

o i

1 1

dv dv
d d

θ θ

ς= ς=

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ς ς⎣ ⎦ ⎣ ⎦  

(62) 

 
as 
 

ia 0.361=  (63) 
 

The constants ao in (46) was also determined from the 
matching conditions (61)-(62). 
    The calculated velocity distributions for the outer 
and inner zones from the solutions (37), (42), (46), 
(55), (58), and (60) using the  Mathematica [15] are 
shown in Fig.3 and are in excellent agreement with 
Fig.5.12 of Schlichting [2] that is based on the exact 
numerical calculations of  Cochran [13].  This close 
agreement may be considered as evidence that the 
modified theory presented herein has indeed captured 
the essential elements of this complex flow field. 
    The results (59) and (63) are now used to predict 
the moment experienced by a rotating disk of radius R 
wetted on both sides.  This is given in terms of the 
dimensionless moment coefficient   
 

G
AZIMUTHAL − H

AXIAL

F
RADIAL

OUTER
INNER

ζ = z ′ ω
ν

 
 

 
Fig.3  Calculated velocity distribution in inner and 
outer zones for flow near a rotating disk. 
 
 

M
2 5

2MC 1 R
2

=
ρω

 (64) 

 
by the expression [2] 
 

1/ 2

M 1/ 2

2 G (0)C
R

′π ν
= −

ω
 (65) 

 
From (59) and (63) one obtains  
 
G (0) 0.361′ = −  (66) 
 
and its substitution in (65) results in  
 

M
2.27C

R
=  (67) 

 
where the Reynolds number is defined as 
 

2R ω
=

ν
R  (68) 

 
The result (67) is to be compared with the classical 
finding [2] 
 

M
3.87C

R
=  (69) 
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that is based on the exact numerical calculations of 
Cochran [13] and is in good agreement with the 
experimental observations of Theodorsen and Regier 
[2, 14]. 
    The quantity of fluid which is pumped outwards as 
a result of centrifugal forces from one side of the 
rotating disk of radius R is [2] 
 

r
0

Q 2 R v dz
∞

′ ′= π ∫
 

(70) 

 
After substitution from (42), (55), and (68) one 
obtains from (70) 
 

13/ 2
2

1/ 2
0 1

Q erf (2 )d exp[ ( / 2 1/ 2) ]d
2A

∞⎧ ⎫π ω
= ς ς + − ς −⎨

⎩
∫ ∫R

ς⎬
⎭

 
  (71) 
that is expressed as 
 

3 1 2A AQ 0.886 R
A
+⎡= πω ⎢⎣ ⎦

R ⎤
⎥  (72) 

 
where A1 and A2 are constants respectively 
representing the integrals on the right-hand-side of 
(70) 
 

1

1
0

A erf (2 )d 0.7184= ς ς =∫  (73) 

 

2
2

1

A exp[ ( / 2 1/ 2) ]d 1.7725
∞

= − ς − ς =∫  (74) 

 
    The ratio involving the three integrals A1, A2, and 
A = 2.4887 from (38) is very close to unity  
 

1 2A A 1.00088
A
+

=
 

(75) 

 
such that (72) becomes almost exactly the classical 
result of Schlichting [2] 
 

3Q 0.886 R= πω R  (76) 
 

By continuity equation, the quantity of the fluid 
flowing towards the disk in the axial direction is also 
equal to (76). 

4 Concluding Remarks 
Following the classical theory of von Kármán, the 
solution of the modified equation of motion for the 
classical problem of laminar flow near a rotating disk 
was determined. The predicted velocity profiles were 
found to be in excellent agreement with the exact 
numerical solutions.  The quantity of fluid being 
pumped by a rotating disk of radius was found to be 
identical to that predicted by the classical theory.  
Also, the predicted moment on a rotating disk wetted 
on both sides was shown to be in reasonable 
agreement with the experimental observations and the 
classical findings based on numerical calculations. 
 
 

References: 
 

 [1] de Groot, R. S., and Mazur, P., Nonequilibrium 
Thermodynamics, North-Holland, 1962. 

 [2] Schlichting, H., Boundary-Layer Theory, 
McGraw Hill, New York, 1968. 

 [3] Williams, F. A., Combustion Theory, 2nd Ed., 
Addison-Wesley, New York, 1985. 

 [4] Sohrab, S. H., A scale-invariant model of 
statistical mechanics and modified forms of the 
first and the second laws of thermodynamics. 
Rev. Gén. Therm. 38, 845-854 (1999). 

 [5] Sohrab, S. H., Transport phenomena and 
conservation equations for multi-component 
chemically-reactive ideal gas mixtures. 
Proceeding of the 31st ASME National Heat 
Transfer Conference, HTD-Vol. 328, 37-60 
(1996). 

 [6] Sohrab, S. H., Scale-invariant forms of 
conservation equations in reactive fields and a 
modified hydro-thermo-diffusive theory of 
laminar flames. Proceeding of the International 
Workshop on Unsteady Combustion and 
Interior Ballistics. June 26-30, 2000, Saint 
Petersburg, Russia. 

 [7] Smoluchowski, M., Polish Men of Science. R. 
S. Ingarden (ed.), Polish Science Publishers, 
Warszawa, 1986. 

 [8] Sohrab, S. H., Modified form of the equation 
of motion and its solution for laminar flow 
over a flat plate and through circular pipes and 
modified Helmholtz vorticity equation. 
Eastern States Section Meeting, The 
Combustion Institute, October 10-13, 1999, 
North Carolina State University, Raleigh, 
North Carolina. 



 8

 [9] Sohrab, S. H., A modified theory of axi-
symmetric stagnation-point laminar boundary 
layer flow. Western States Section Meeting, 
The Combustion Institute, October 2001, Salt 
Lake City, Utah. 

 [10] Sohrab, S. H., A modified theory of laminar 
boundary layer flow by natural convection on 
a vertical hot plate. Eastern States Section 
Meeting, The Combustion Institute, December 
2001, Hilton Head Island, South Carolina. 

 [11] Sohrab, S. H., Modified theories of axi-
symmetric and two-dimensional laminar jets. 
Efficiency, Costs, Optimization, Simulation 
and Environmental Aspects of Energy Systems, 
July 3-5, 2002, Berlin, Germany. 

 [12] Th. von Kármán, Über laminare und turbulente 
Reibung. ZAMM 1, 233-252 (1921); NACA T 
M. 1092 (1946). 

 [13] Cochran, W. G., The flow due to a rotating 
disk. Proc. Cambridge Phil. Soc. 30, 365-
375 (1934). 

 [14] Theodorsen, Th., and Regier, A., Experiments 
on drag of a revolving discs, cylinders, and 
streamline rods at high speeds. NACA Report 
793 (1944).  

 [15] Wolfram, S., and Beck, G., Mathematica, The 
Student Book. Addison Wesley, New York, 
1994. 

 


