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Abstract: – The study of thermal behaviour is useful to identify causes of failure in electrical machines. This 
work details a two dimensional model for computing the magnetic and thermal finite element solution of 
induction motor using a weak coupling algorithm. In order to improve the accuracy of the adopted numerical 
formulation, the decrease of the electric conductivity with temperature is taking into account.  
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1 Introduction 
In different types of electrical energy transducers 

such as electrical machines, it is important to study 
the electromagnetic behaviour jointly with the 
thermal behaviour [1][2]. Two interactions justify 
such a coupled view. 
• Most thermal energy sources heating up these 

devices are in fact electromagnetic losses. 
Generally, these heat sources are a function of 
the local electromagnetic field. Therefore they 
represent a coupling of the electromagnetic field 
to the thermal field. 

• Many material characteristics playing a role in 
the electromagnetic field are depending on the 
local temperature. For instance, the electrical 
conductivity of a copper conductor may change 
about 30 % over the temperature interval of 
some 100 °C in which most electrical machines 
operate.  

 
 In this paper the implementation of a coupled 

electromagnetic-thermal field problem is presented. 
In order to estimate the thermal impact on the 
induction motors a comparison between two 
simulations is realized. The first simulation is done 
with a constant electric conductivity. In the second 
the dependency of the electric conductivity on 
temperature is taking into account.             

 
 

2 Electromagnetic problem  
Distributed heat sources are calculated by solving 

the voltage source eddy current problem, accounting 
for saturation in a dynamic rotating model. 

 
 

2.1 Field equations  
Magnetodynamic complex formulation for the 

electromagnetic problem is used. 
 

   ( ) exJA =×∇×∇ υ      in stator windings    
   ( ) 0=×∇×∇ Aυ     in air gap 
   ( ) 0=∇++×∇×∇ Vgj EES σσωυ A in rotor windings  
   ( ) 0=×∇×∇ Aυ     in core materials                            
   0=A                     on the outer boundary  
where 
A: Magnetic vector potential, J: Inductor current 
density, υ: Reluctivity, σ : Electric conductivity, V: 
Scalar potential, ωs: Pulsation of the rotor currents, g: 
Slip of the rotor. 
 
 
2.2 Voltage equations 
 External voltage source is connected externally to 
the finite element region. For this case stator 
equivalent circuit equation is given by: 

2,31,i   with   VLjiRU itêtesphtêtei i
=∆++= ω   (2)       

where 

 (1)



Rtête: End windings resistance, Ltête: End windings 
inductance, V: Scalar potential difference between 
the ends of stator’s conductors.  
 
 
 
 
 
 
 
 
 
 Voltage equations are not constructed for the 
rotor winding because we assumed that the ends of 
the rotor are equipotential surfaces of the scalar 
potential. 
 
 
2.3 Coupling field equations to voltage 
equations 

 Field and voltage equations should be solved 
together as a system of equation [3].  
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where  
U: Phase’s voltage vector, iph: Phase’s current vector. 
 

 Because of the nonlinearity of the core materials 
the system of equations must be solved iteratively 
(fixed-point technique).  
 The heat sources associated with magnetic field 
are Joule losses caused by the driving currents and 
the induced eddy currents. Iron losses occur in 
ferromagnetic materials subject to hysteresis 
phenomena. 
 
 
3 Transient thermal problem  
 The heat generation q of electromagnetic nature 
results in coupling of the source term of the right-
hand side of the thermal equation. Heat transfer 
inside the machine is described by the following 
equations: 
 

    ( ) qTλ
t
TCp +∇∇=
∂
∂ .ρ     in all the domain 

   ( ) ( )refprc TThh
n
T −+=

∂
∂− λ   on the boundary  

where 

T: Temperature, ρ: Specific mass, Cp: Specific heat,               
λ : Thermal conductivity, hc: Convection coefficient,            
hr: Radiation coefficient, Ta: Ambient temperature, n: 
Outer normal vector to the boundary.   

The finite element model of the heat conduction 
problem with mixed boundary conditions 
(convection, radiation) and thermal sources is given 
by the following matrix equation [4]:    

[ ] [ ] [ ] [ ] [ ]FTM
t
TK =+

∂
∂                      (5) 

where 
 [K]: Thermal capacity matrix, [M]: Thermal 
conductivity matrix, [F]: heating sources vector.  

Contact resistances and thin insulation layers are 
considered in order to obtain a realistic temperature 
distribution [5].  

 
 

4 Coupled electromagnetic-thermal     
problem 

 Weak coupled modeling between electromagnetic 
and thermal phenomena is adopted. In order to obtain 
solutions of the coupled problem two approaches are 
used: 
• The first approach consists of solving the 

electromagnetic and thermal problems in 
successive steps with up-dating the reluctivity. 

• In the second approach the equations are solved 
sequentially with up-dating the reluctivity and 
the electric conductivity. 

The two coupled models are applied on a three-
phase induction motor.  
       

 
 
 
 
 
 
 
 
 
 
 
 
In order to analyze the effect of the thermal 

dependency of electric conductivity and the 
contribution of the iron losses for the temperature 
raise some results are presented in table 1. 
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 TMax [°C] 

Without iron losses, constant conductivity  128,86 

Without iron losses, thermal dependent conductivity  134,13 

With iron losses, constant conductivity  132,5 

With iron losses, thermal dependent conductivity  138 

Table 1 Hot spot temperatures 
 

 The computed 2D magnetic and 2D thermal 
solution fields since the decrease electric 
conductivity is taking into account are given in 
Figure. 3 and Figure. 4.       
 
 
 
 
 
 
 
 
 
 
 

Dark regions indicate the hottest spots (138°C), 
i.e., the rotor. It can be seen that a considerable 
thermal gradient between stator and rotor is noted 
(Fig.4).   
 
 
 
 
 
 
 
 
 
 
 

The evolution of temperature in different parts of 
the machine since the decrease electric conductivity 
is taking into account is shown in figure 5. 
 
 
 
 
 
 
 
 
 
 
 

6 Conclusion 
 The results presented here, proof that the 

temperature dependency of the electric material 
characteristics must be considered when an accurate 
simulation of induction motor is required. 
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Fig.3  Equipotential lines of the              
vector potential at slip 5% 

 

Fig.4  Isothermal lines in the 
induction motor 
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Fig.5 Evolution of temperature in different parts of 

the machine  


