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Abstract: - We present an enhancement of our partial differential equation model (McLean DR, Gra-
ham BP. Mathematical formulation and analysis of a continuum model for tubulin-driven neurite
elongation. Proc. Roy. Soc. Lond. A, Vol. 460, 2004, pp. 2437-2456) of neurite elongation to include
the cellular autoregulatory mechanism responsible for up-(down-)regulation of the tubulin flux.
The existence and uniqueness of steady state solutions is then proven in each degenerate case and
in the general cases of vanishing and non-zero active tubulin transport and species degradation.
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1 Introduction

Mathematical modelling and analysis are the
keys to defining and quantifying biophysical sys-
tems such as those in neuroscience and further
to neuronal development. Hodgkin and Huxley
famously derived a system of nonlinear differen-
tial equations in 1952 to describe the transmis-
sion of electrical impulses in neurons. The field
of mathematical developmental neuroscience is
very new. One focus of the modelling has been
to the morphological development of neurons.
The chemical most directly responsible for neu-
rite outgrowth is tubulin and this is produced
in the soma, or cell body. It is then carried in
unpolymerized form by molecular motors to the
growth tip. At the growth tip, the oligomer is
polymerized onto the ends of long tubulin mi-
crotubules which then contribute to the length
of the neurite. The temporal evolution of the
oligomer tubulin has been studied by numerous
ordinary differential equation models of increas-
ing complexity all implemented computationally
(see [1],[2], [3] and, for an overview, [4]). These

models have served as important stepping stones
in the understanding of neurite growth. A full
mathematical analysis of these models is made
difficult, however, due to their analytically in-
tractible nature. We have developed a partial
differential equation model of unbranched neu-
rite elongation [5]. This model provides an ac-
curate continuum description of the important
transport, diffusion and species degradation pro-
cesses along the entire length of a single, un-
branched neurite which has been lacking in pre-
vious models. The model [5] is made mathemat-
ically interesting by the inclusion of a moving
boundary at the neurite’s growth tip. Briefly, [5]
describes the tubulin concentration c(z,t) at a
position z € [0,1] at time ¢ > 0. The tubulin
and neurite length evolution equations are
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where a, D, g,r and s are the active transport,
diffusion, species degradation, growth and re-
traction parameters, respectively. In [5], bound-
ary conditions of constant flux are maintained at



x = 0 and of a flux proportional to the tubulin
concentration minus a constant disassembly rate
at x =1
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with constants €,,¢; and ¢g. The model was
then solved for the steady values of ¢(z,t) and
[(t) using an asymptotic technique. We found
that a neurite could easily regulate the extent
of its own growth by increasing or decreasing its
tubulin production relative to the active trans-
port/species degradation fraction. An important
feature not yet included in [5] is the cellular au-
toregulatory function of tubulin production at
the soma. It has been shown, [6], that the mRNA
regulates the tubulin production at the soma and
that there is evidence that the synthesis of tubu-
lin mRNA is reduced at high tubulin concentra-
tions in the soma by a feedback control mech-
anism. It is the purpose of this work to intro-
duce the autoregulatory control mechanism and
to prove the existence of steady solutions.

2 Autoregulatory Model

The autoregulatory aspect of the neurite’s devel-
opment can be taken into account by modifiying
the left-flux boundary condition to

_%:eoco (1—%) at x=0 (c1 >0).
Here, the flux either up- or down-regulates itself
when ¢ < ¢; or when ¢ > ¢, respectively, in
such a way as to attain ¢ = ¢; at x = 0. If we
then proceed to nondimensionalise the governing
equations (the details of which are omitted, see
[5]) then we have:
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where o, and 7 are the dimensionless active
transport, degradation, and retraction coeffi-
cients, respectively, we have introduced a neu-
rite length co-ordinate y = z/l so that c¢(x,t) =

c(z(y),t) =: C(y,t). In [5], boundary conditions
of constant flux are maintained at y = 0 and of
a flux proportional to the tubulin concentration
minus a constant disassembly rate at y = 1. In
the autoregulatory model these are:

oC

~% =¢l(1—0C) at y =0, (3)
oC
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with non-negative constants ¢,p, 7 and 0(:=
cg/c1), the dimensionless production, pumping,
retraction and autoregulatory coefficients, re-
spectively.

3 Steady State Equations
To save on notation we write C = C(y) and [

(also L := al) for the steady state concentration
and length. The steady equations are:

Tubulin:  0=C" —alC' — BI2C, (5)
Length: 0= [Cly=1 —, (6)
Left bdy:  C'(0,t) = —¢l + ¢0IC, (7)
Right bdy:  C'(1,t) = 0. (8)

3.1 Degenerate Case I: «a:=0, 8> 0

Here the auxiliary equation simplifies to m? =
P12 giving m = ++/Bl. Let us define, for this
subsection only, that L := \/3l. The general so-

lution is then

Cly) =
= C'(y) =

Aexp(Ly) + B exp(—Ly),
AL exp(Ly) — BLexp(—Ly).

(A, B € R). Application of the right bdy condi-
tion (8) shows that B = Aexp(2L) so that

Cly) =
= C'(y) =

A{exp(Ly) +exp[L(2 — y)]}
AL {exp(Ly) + exp[L(2 — y)]} -

The left bdy condition (7) then shows that

A= {g[eﬂ — 1] + 0[e*F + 1]}_1.



From the length equation (6)
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where ¢ := ¢/(7/B B). Note that for a physical
solution, we require ¢2(1 —926%) +1 > 0. This
leads to

0<0< 1+ =

1

; ¢2 =: Hmam-

The length solution I, > 0 is always feasible,
however the solution [_ arising from the nega-
tive path may not always be so. For [_ > 0 we
require that

& d—p—1> \/q32(1 —4262) +1  (10)

Define functions

yi(x) = ¢o—1—¢uz,
i) = 145

Here, y; is a line of gradlent —1 with z— and
y—intercepts at x =1 — gb_ and y = d) —1, re-
spectively. Function 15 is an ellipse centred on O
whose major and minor axes coincide with the
co-ordinate axes and whose x— and y— inter-
cepts are (1 + ¢~2)1/2 and (1 + ¢2)/2, respec-
tively. Therefore, in the top-right quadrant, line
y1 can not intersect ellipse y2 since, V<;~S > 0:

p0) = 148 =/(6-12+20

> V(@ -1)2=1o-1]

> 41(0)

and since the zero of the ellipse in x > 0 al-
ways exceeds the zero of the straight line yi:

\/14+¢=2>1—¢'. A positive solution to the
steady state length equation [ = [_ is not possi-
ble, the only solution coming from the positive
path in (9).

3.2 Degenerate CaseIl: o > 0, B8:=0

Here the auxiliary equation is m(m — al) = 0
giving roots m = 0 or m = ol =: L (for the rest
of this work). Hence the general solution is

Cly) =
= C'(y)

A+ Bexp(Ly)
BL exp(Ly)

(A,BER)

The right boundary condition (8) requires:
C'(1)=0 & B=0or L=0.
Assuming that L # 0 then B=0and C = A (a

constant function). The left boundary condition
(7) requires:

C'(0) = —g¢l+ ¢plOC(0)
< 0 = —ol+9loA
&S A = %

From the length equation (6) we must have 0 =
[C]y=1 — v which is equivalent to § = 1/ and [
is completely undetermined. This implies that if
an initial condition is set where C(y,0) = ~ with
6 =0.,., =1/vand any initial length I =y > 0
then this configuration will persist V¢ > 0. For
any other initial condition there can be no steady
solution. Interestingly, this result might sugges-
tive the existence of an unstable steady state for
0 < 8 <« 1. Such behaviour in the limiting cases
can be investigated by numerical or asymptotic
means. In fact, our current asymptotic analysis
(unpublished) for the limiting dynamic case of
small 3 gives limit cycle behaviour.

3.3 General Case: o, >0
3.3.1 Nonlinear Length Equation

Consider the most general case, i.e. where nei-
ther « nor @ are zero. As in MG04, if we mo-
mentarily ignore (6) then the a.e. for the reduced
system gives roots m = m4 = L f,:Lt where L = al



and fif = L(1£[1+4h])'/2). The general solution
is:

Aexp(Lfij) + Bexp(Lf, y)
(11)
ALf;" exp(Lf;fy)
+BLf, exp(Lf,y).  (12)

for A,B € R The right boundary condition (8)
shows that

A= —In eqinir - 5B

fi
so that
Cly) = B {—ﬁ—f; explL(f; — f;})
h
x exp(Lfity) +exp(Lfy)}
& C'y) = BLf, {—exp[L(f, — fi)]

x exp(Lfify) +exp(Lfyy)}-

The left bdy condition (7) determines B, and
hence A:

—¢l
B= 01
Lf; — o0l — f; [L - %] exp(—LH)

where H := [1 +4h)'/2 = fF — f~ > 0. This
then determines the solution for C' up to the (as
yet unknown) length I:

Cly) = ke
S explLf, (y—1)] — f, exp[Lf;f (y—1)]
1 ey [1— ] el Ls7)
(13)

Now the steady state length equation shows
C(1) = v and noting that

e %(1 L+ 4R)) = —h,
—LH+Lf =L(f; — fiF + 1) =Lf;

gives the nonlinear length equation which must
be solved for L (and hence [):

arh

¢
_ H(fy = fn)
[1- %] exp(—Lf;)) = [1 = 2| exp(-Lf;f
S ap [1 - %] exp(—Lfy,)
h
= [1- | exn(ong) 4 1
h

(14)
where @y, := (v/¢pa. When 6 = 0 (14) becomes
apexp(—Lf; ) = anexp(—Lf;") + H

as found in [5].

3.3.2 Existence

We are interested in the situation where a solu-
tion L exists to (14). Define functions y1, y2 €
C2(RY):

n) = an(1- %) exp(~fy2), (15)
0
ya(z) = ap (1 — %) exp(—f,jx) + H.

(16)

A solution to (14) is then equivalent to solv-
ing y1(r) = ya2(x) for x € RT. If curves y
and yo intersect, a solution x = L exists to the
steady state length equation. Given positive sys-
tem parameters, note that f,” <0 < f;' and so

1-— % > 0. However, 1 — % may be of either
Jp Jp

sign (or zero). Specifically, y; is a monotone in-
creasing function of x, bounded below by 0 and
tending to co as x — oo. However, y, is either:

[ (a) monotone increasing
+
and bounded above by H if § < %
(b) constant with value H
if = 20
BY= 7
(¢) monotone decreasing
+
| and bounded below by H if § > “J




Furthermore, the y—intercepts for curves y; and
yo are finite and take values:

y1(0) = ap (1—%),
yQ(O) = &h (1—%) +H.

Case (a): 0 < %
Clearly, for curves y; and yo to intersect, given
that y; is monotone increasing and y, is mono-
tone decreasing, it is sufficient that y1(0) <

y2(0)!. This is not true for general 6:
y1(0) < 42(0)

1 1
i=4 &hgf)@(———_) <H
W fa
H
& 0< - ) 1 =: th
apd (? - E)

Thus, steady-state solutions exist iff 8 < 6.pi.
Observe that 6..;; can be simplified to:

0. _ H _h 1

T Grg (HIR) T and v

ozf,j_

Case (b): 6 =
Using a similar argument to that in case (a) ex-
cept that here yo is a constant function with
value H, a steady state solution will exist pro-
vided

+
Case (c): 6 > %
This situation is more delicate than either of
case (a) or case (b). Here, both functions y; and
yo are monotone increasing functions of x. The
function y; is concave-up on all z € Rt (y{ > 0)
and yo is concave down on all z € R (y§ < 0).
Therefore, there are possibly none, one or two so-
lutions to the length problem. However, we now
show that there can be at most one by observing
the following result:
/ _—
ho) = an (%
< ap (ﬁ
@
= 41(0)

)
+=50)

since —f,j' <0< —f, . Since both y; and y3 are
monotone increasing functions of x € RT with
opposing concavity: y4(z) < 0 < y{(z) Vz € RT;
then since y5(0) < y}(0) [strict] at most one in-
tersection between curves y; and y» is possible
for x € RT. For such an intersection to exist, it
suffices that y1(0) < y2(0). But this is exactly
the same condition that we required in case (a)
and so exactly one steady-state solution exists
for case (c) provided 0 < O.piz-

Refer to Figure 1 for a graphical illustration of
the intersection between curves y; and gy for
each of cases (a), (b) and (c).

4 Summary and Future Work

We have extended [5] in developing a cellular
autoregulatory model of neurite morphogenesis.
The PDE model includes a moving boundary
and a feedback control mechanism on the left-
most boundary. For the degenerate case of posi-
tive decay /tubulin degradation (£ > 0) and van-
ishing active transport (a = 0) we found a steady
solution to exist coming from the positive path
in (9). In the degenerate case of no decay (5 = 0)
but positive active transport only one steady so-
lution exists for a precise initial condition. It is
very likely that this steady solution is unstable to
infinitesimal perurbations. For the general case
of non-trivial active transport and tubulin degra-
dation, we developed a nonlinear length equation
for the steady state length (14). Unfortunately,
this cannot be solved analytically for L. How-
ever, we proved that exactly one steady-state so-
lution exists to (14) when 6 # af," /¢ provided

1
0 < Ocrit 1= —.
Y
When 0 = « f,j' /¢ then we require

< ——=

for a steady-state solution to exist.

The next step in our work is to identify the
steady states for the general case and to de-
termine their stability through a perturbation
method. Longer term, we seek to model branch-
ing behaviour with a development of this model.

IStrictly speaking, equality is possibe here, but it leads to a steady state which has zero length and this is not

biologically plausible.
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Figure 1: The various possibilities for intersection between curves y;(z) and y2(x). Each row
corresponds to each of the cases (a), (b) or (¢) and each column corresponds to the regimes for 9:

0 > Ocrit, 0 = Ocriz or 0 < Ocriz.



