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Abstract: This paper describes the fundamental equations for two and one dimensional flow. It shows the assumptions 
which are necessary for their application for the simulation of natural river flow. Different resistance laws with the 
consideration of vegetation drag are presented. Furthermore, problems of the practical computation as well as of the 
theoretical analysis are pointed out. Common errors are reviewed. 
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1   Introduction 
The simulation of flood flows through river systems has 
long been of interest and many models have been 
proposed and developed. The main interest is the 
description of the deformation of the hydrograph when a 
flood flow propagates along a water shed like in Figure 
1. 
 

 
 
Fig. 1: Sketch of the deformation of a hydrograph in 
natural river flow with retention effects 
 
Flood flow is a changing discharge with time, where at 
the beginning the discharge is increasing. It depends on 
the properties of the watershed how the hydrograph is 
deformed. 

There are some models to describe the deformation with 
hydrological methods which are called flood rooting 
methods. But these models are empirical and do not 
consider the physics of the flow. Physically based are the 
hydrodynamic models which are derived from the 
Navier Stokes equations. They will be considered in this 
paper. It is the object of this article to show the 
assumptions which are necessary to derive them. 
 
 
2   Governing Equations 
The basic equations for hydrodynamics of river flow are 
the NAVIER STOKES Equations. They can be derived 
from the law of conservation of momentum with the 
assumption of a linear correlation between the gradients 
of velocities and the stress tensor. Furthermore the 
continuity equation for incompressible fluids holds in the 
following form: 
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In natural rivers the flow is always turbulent. Therefore 
it is sufficient to calculate with an average velocity. 
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The interval ∆t has to be chosen in a way that the 
average velocity remains constant for steady flow. If 
equation (2) is applied to the NAVIER STOKES Equations 
the REYNOLDS Equations (3) are obtained. 
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Together with the continuity equation (1) they are the 
hydrodynamic basis for simulation of river flow. To 
solve the equations assumptions for the last term of (3) 
are necessary. BOUSSINESQ 1877 suggested to estimate 



the so called REYNOLDS stress terms in the following 
form: 
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The factor νT is the eddy viscosity, which is not a 
constant. The value depends on the turbulence of the 
flow. The kinetic energy is symbolized by k 
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3   Three dimensional flow 
Equations (1) and (3) are the basis for three dimensional 
flow simulation. The eddy viscosity should be calculated 
with the assumption of equation (4). For the bottom 
shear stress τb the logarithmic velocity profile and the 
relation that the square of the velocity is proportional to 
τb at the water depth z0 has to be an input. 
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Three dimensional models are seldom used for the 
simulation of natural rivers. Occasionally the equations 
are simplified with the assumption of hydrostatic 
pressure 
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where p = pressure. In this way the pressure is eliminated 
completely.  
 
 
4   Two dimensional flow 
By averaging equation (1) over the water depth h 
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is obtained. The velocity components in (8) are averaged 
over time according to (2) and water depth. Averaging of 
equation (3) over water depth yields the shallow water 
equations. 
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5   One dimensional flow 
If the flow is approximately one dimensional, the 
shallow water equations (9) can be further simplified. 
The following conditions are necessary for a flow which 
should be described with one dimensional formulas: 

• vx >> vy, vz, 
• smooth change of water depth 
• smooth change of cross sectional area 
• no horizontal and vertical mass transfer 
• horizontal water level perpendicular to the main 

flow direction 
• equal energy slope for main channel and flood 

plains 
 

 
 
Fig. 2: Sketch of one dimensional flow 
 
Often there is a tributary inflow rate/unit length qe. 
Sometimes the costs for two dimensional flow 
simulation are not justifiable although they would be 
physically necessary. So one dimensional models are 
used at the limit of there validation. In this case the 
results should be interpreted very carefully. If the 
continuity equation is averaged over the width of the 
channel 
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is obtained where A = cross sectional area and Q = 
channel flow. Averaging the shallow water equations 
yields
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where zSp = waterlevel above datum, x = space variable, 
Sf = friction slope, ve = velocity and ϕ = angle of 
tributary inflow. β is often called the BOUSSINESQ 
coefficient. 
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Equations (10) and (11) are the SAINT VENANT 
Equations for one dimensional channel flow. In the case 
of steady flow the first term in (11) is zero and equation 
(11) can be solved approximately 
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6   Determination of friction 
For the calculation of friction it is assumed that the 
bottom shear stress is a function of |v|2  
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For one dimensional flow it follows from (14) that 
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The friction factor is determined by the 
COLEBROOK/WHITE formula 
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where f = form factor; Re = Reynolds number; ks = 
equivalent sand roughness; rhy = hydraulic radius. 
Sometimes the empirical formula from STRICKLER is 
used 
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The value of kSt depends on water depth. For one 
dimensional flow the friction slope SF can be determined 
according to DARCY-WEISBACH with the following 
expression: 
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To consider friction due to vegetation, an assumption is 
made that the resistance factor for the plants is added to 
the factor of bottom resistance 

total b plant=λ λ + λ            (21) 
 
 
6.1  Consideration of vegetation 
The resistance of non flexible vegetation can be 
calculated with the formula of LINDNER [8] and PASCHE 
[13]: 
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where dm = diameter of plants, ax and ay = average 
distance between the plants. The exact computation of 
the drag coefficient cWR is very difficult and not 
completely solved yet. See BWK99 for more details.  
 

Fig. 3: Flow over flexible vegetation 
 
As an example for the computational difficulties of the 
resistance of vegetation the flow over flexible vegetation 
is chosen. Figure 3 shows the flow situation. 
Investigations of KOUWEN have shown that the 
following relation holds 
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The height of the vegetation in the flow kG is estimated 
with the empirical formula 

0,4
0,59

G G
b

MEIk 0,14 h
 

= ⋅  τ 
         (24) 

The values of a and b are found in tables. Both values 
vary between 0,15-0,29 and 1,85-3,5. The stiffness MEI 
could be found in experiments after KOUWEN [8]. For 
green grass it has been found that 319(hG)3,3 is a good 
approximation and for dead grass 25,4(hG)2,26. The 
method of KOUWEN describes the physical process 
correctly. The main difficulty is the estimation of the 
stiffness MEI. Although there are some theoretical 
approaches for the calculation of MEI, a lot of research 
is necessary in this field. 

 
 

6.2  Very rough flow 
If the bottom roughness is very rough the logarithmic 
velocity profile is not valid anymore. The flow has two 
layers. The approach of AGUIERRE-PE/FUENTES [1] 
shows the estimation of the factor λ in this case. 
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The parameter dm is the diameter of the roughness 
elements, αt is a parameter for the form and the 
geometry of the roughness elements and βW is a wake 
parameter. The transition between equation (18) and (25) 
should be continuous, but it is not. Also the range of 
dispersion of the parameters αt and βW  is too wide. For 



both topics further research is necessary. The resistance 
laws of one dimensional flow with vegetation are often 
transferred to two dimensional flow. Even though this is 
the right approach, more systematical research is 
necessary at this area. 
 

 
 
Fig. 4: Velocity profile for very rough flow 
 
 
7 Limits of computation 

 
 

7.1  Limits of practical two dimensional flow 
simulation 
For the calculation of two dimensional flow often a 
constant eddy viscosity is assumed. Calibration of the 
models are done for steady flow situations. The change 
of eddy viscosity for different discharges is not 
considered. A comparison of calibrated and measured 
eddy viscosity values shows a difference of a factor 10 
or even more [10]. Computations with the measured 
value of eddy viscosity are sometimes unstable. If the 
resistance factor from STRICKLER in equation (19) is 
used in two dimensional flow computation, its 
dependence from water depth is very often neglected, 
because it is unknown in most of the cases. Another 
difficulty is, that the value kSt is the output of an 
averaging over the cross sectional area and not over the 
water depth like it should be for a coefficient in two 
dimensional flow simulation. The grid generation is a 
very complex procedure. To get more precise results and 
a fast computation the optimization of the grid is 
necessary. The criteria for the optimal grid, especially 
for the difficult topography of natural rivers are still a 
topic of research. 
 
 
7.2  Limits of practical one dimensional flow 
simulation 
When applying the assumptions and conditions 
according to section 5 the one dimensional equations 
(10) and (11) are simple but efficient model equations. 
However, an exact analysis of the computation area is 
necessary to examine the validity of the assumptions 

made. If a geometrical separation of different flow areas 
is apparent, a segmentation in stream tubes is possible. 
The cost of computation is small in comparison to three 
or two dimensional simulations. To plot the results 
however can requires more effort, for example if 
inundation borders have to be plotted. From the physical 
point of view the one dimensional equations represent a 
rough simplification of the natural processes. The 
friction slope Sf contains all resistance forces resulting 
from: 

• molecular and turbulent viscosity, 
• form drags, 
• horizontal and vertical secondary flow 
• bottom friction, and/or the friction at the banks and 

the flow around obstacles. 
Even if individual forces can be neglected, the majority 
of these effects has to be considered with an appropriate 
resistance law and/or by drag coefficients. To sum up all 
these effects to only one parameter Sf is problematic. For 
reasons of efficiency the one dimensional equations are 
sometimes used at the limits of their validity. It becomes 
evident when parameters have to be set with unrealistic 
values. This applies in particular to the equivalent sand 
roughness ks. In these cases special care has to be 
dedicated to the reliability of the results. The illustration 
of retention phenomena with the one dimensional 
equations is still a research topic, TESCHKE [18]. By 
representation of the entire river by only a single stream 
tube the complex exchange between the main channel 
and the floodplains can not be described correctly. 
Especially the great difference of the flow velocities 
result in the deformation of the hydrograph. Another 
major question is whether the flow resistance due to 
bottom roughness changes for unsteady conditions in 
relation to steady flow and therefore contributes to the 
hysteresis effect. So far the same approach is made for 
both cases. A further theoretical difficulty should be 
mentioned. The SAINT-VENANT equations can also be 
derived by applying the energy theorem, see e.g. BWK 
2000 [4], SCHROEDER [16] and FIELD et. al. [6]. Then 
the correction factor for a non uniform velocity profile is 
replaced with the CORIOLIS coefficient: 
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It is obvious that even when the forces of resistance are 
computed in the same way, the resulting water levels are 
not identical for both cases. BWK 2000 [4] examines 
this problem for steady flow conditions and FIELD et al. 
[6] for unsteady cases. 
 
 
8   Errors 
The Error is the difference between the computed and 
the exact solution. The error of the estimated solution 
has the following reasons 

 



• errors of discretization  
• errors at the boundary conditions 
• errors of the numerical procedure 
• errors of iteration processes 
• round off errors 
• measurement errors of input data 

See OERTEL/LAUREIN [12] for more details. 
 
 
8.1  Estimation of errors 
The exact estimation of the errors is difficult. Two 
dimensional models should compute the water depth 
with an accuracy of ±5 cm. One dimensional models 
compute the water depth with an accuracy of ±10 cm 
after calibration. 
If the models are not calibrated before there is more 
inaccuracy. 
 
 
8.2  Natural limitations of computer models 
Natural limitations of every computation are: 

• The result of a computation can not be better than 
the knowledge of the person doing the computation. 

• The results of a hydrodynamic computation can not 
be better than the precision of the input data. 

 
 
9   Conclusion and further steps 
It has been shown that for the computation of water 
levels in natural rivers several assumptions are 
necessary. With the presented formulas it is possible to 
achieve good results in simulating natural river flow for 
most practical problems. 
Research is for example necessary in the following areas  

• Consideration of retention effects for one 
dimensional flow simulation 

• Measurement of eddy viscosity respectively 
turbulent stress in natural rivers 

• Automatic grid generation for two dimensional 
flow simulation 

Some ideas of this topics are sketched in figures 5, 6 and 
7. 
 

 
 
Fig.5: Principle of automatic grid generation with laser 
scanning [14] 

 

 
 
Fig.6: Concept of stream pipes for natural rivers with 
floodplains. The conservation of continuity, energy and 
momentum should be satisfied at every node. But a mass 
transfer is allowed in this model perpendicular to the 
flow direction [18]. 
 

 
 
Fig.7: Idealized distribution of the velocity and shear 
stress in a natural river with floodplains. Measurements 
have to be done to verify and improve the used theory 
[10] 
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