The Universal E - Subcompactification of Semigroups

ABDOLMAJID FATTAHI * Depatment of Mathematics Faculty of Science, Razi University Kermanshah IRAN

Abstract: In this article we consider the enveloping semigroup of a flow generated by the action of a semitopological semigroup on any of its semigroup compactifications, and we define the notion of E-compactification and E- subcompactification and also we get the universal E- subcompactification.

Key-Words:- Semigroup, reductive semigroup, semigroup compactification, enveloping semigroup, E-subcompactification.

1 Introduction

A semigroup S is called *right reductive* if for each $a, b \in S$, from at=bt for every $t \in S$, it follows that a=b. For example, all right cancellative semigroups and semigroups with a right identity, are right reductive. Throughout this article S will be a semitopological semigroup. By a semigroup compactification of Swe mean a pair (ψ, X) , where X is a compact Hausdorff right topological semigroup, and $\psi : S \longrightarrow X$ is a continuous homomorphism with dense image such that, for each $s \in S$, the mapping $x \longrightarrow \psi(s)x : X \longrightarrow X$ is continuous. The C^* -algebra of all bounded complex-valued continuous functions on S, will be denoted by $\mathcal{C}(S)$. For $\mathcal{C}(S)$ the left and right translations, L_s and R_t , are defined for each $s, t \in S$ by $(L_s f)(t) = f(st) = (R_t f)(s), f \in \mathcal{C}(S).$

The subset \mathcal{F} of $\mathcal{C}(S)$ is said to be left translation invariant, if for all $s \in S, L_s \mathcal{F} \subseteq \mathcal{F}$. A left translation invariant unital C^* -subalgebra \mathcal{F} of $\mathcal{C}(S)$ is called *m*-admissible if the function $s \longrightarrow T_{\mu}f(s) = \mu(L_s f)$ is in \mathcal{F} for all $f \in \mathcal{F}$ and $\mu \in S^{\mathcal{F}}$:=the spectrum of \mathcal{F} . Then the product of $\mu, \nu \in S^{\mathcal{F}}$ can be defined by $\mu \nu =$ $\mu \circ T_{\nu}$ and the Gelfand topology on $S^{\mathcal{F}}$ makes $(\epsilon, S^{\mathcal{F}})$ a semigroup compactification (called the \mathcal{F} -compactification) of S, where $\epsilon : S \longrightarrow S^{\mathcal{F}}$ is the evaluation mapping.

Some *m*-admissible subalgebras of C(S) are: $\mathcal{LMC} :=$ left multiplicatively continuous functions, $\mathcal{D} :=$ distal functions, $\mathcal{MD} :=$ minimal distal functions, and $\mathcal{SD} :=$ strongly distal functions. We also write \mathcal{GP} for $\mathcal{MD} \cap \mathcal{SD}$; and we define $\mathcal{LZ} := \{f \in C(S); f(st) = f(s) \text{ for all } s, t \in S\}.$

For a discussion of the universal property of the corresponding compactifications of these function algebras see [1] and also [4].

Let (ψ, X) be a compactification of S, then the mapping $\sigma : S \times X \longrightarrow X$, defined by $\sigma(s, x) =$

^{*} This research partially was supported by Razi University, Kermanshah, Iran.

 $\psi(s)x$, is separately continuous and so (S, X, σ) is a flow. If Σ_X denotes the enveloping semigroup of the flow (S, X, σ) (i.e., the pointwise closure of semigroup $\{\sigma(s, .) : s \in S\}$ in X^X) and the mapping $\sigma_X : S \longrightarrow \Sigma_X$ defined by $\sigma_X(s) = \sigma(s, .)$ for all $s \in S$, then (σ_X, Σ_X) is a compactification of S (see [1;1.6.5]).

One can easily verify that $\Sigma_X = \{\lambda_x : x \in X\}$, where $\lambda_x(y) = xy$ for each $y \in X$. If we define the mapping $\theta : X \longrightarrow \Sigma_X$ by $\theta(x) = \lambda_x$, then θ is a continuous homomorphism with the property that $\theta \circ \psi = \sigma_X$. So (σ_X, Σ_X) is a factor of (ψ, X) , that is $(\psi, X) \ge (\sigma_X, \Sigma_X)$. By definition, θ is one-to-one, if and only if X is right reductive. So we get the next proposition, which is an extension of the Lawson's result [5; 2.4(ii)]:

1.1.Proposition. Let (ψ, X) be a compactification of S. Then $(\sigma_X, \Sigma_X) \cong (\psi, X)$, if and only if X is right reductive.

A compactification (ψ, X) is called *reductive*, if X is right reductive. For example, the \mathcal{MD} , \mathcal{GP} and \mathcal{LZ} -compactifications, are reductive. A compactification (ψ, X) is called *E*- compactification if $(\psi, X) \cong (\sigma_Y, \Sigma_Y)$ for some compactification (θ, Y) of S. Clearly every reductive compactification is *E*- compactification but the converse is not, in general true. For example see [2; 2.2].

It is easy to see that $(\sigma_{SLMC}, \Sigma_{SLMC})$ is the universal *E*- compactification of *S*.

2 E- Subcompactification

2.1.Definition. Let (ψ, X) be a compactification of S. We say that (θ, Y) is an E- subcompactification of (ψ, X) if $(\sigma_Y, \Sigma_Y) \leq (\psi, X)$.

By the above, every compactification is also Esubcompactification of itself. Now we are going to construct the universal E- subcompactification of S. For this end we need the following lemma.

2.2.Lemma. Let (ψ, X) be the subdirect product of the family $\{(\psi_i, X_i) : i \in I\}$ of compactifications of S. Then (σ_X, Σ_X) is isomorphic to the subdirect product of the family $\{(\sigma_{X_i}, \Sigma_{X_i}) : i \in I\}$ (i.e., $\lor(\sigma_{X_i}, \Sigma_{X_i}) \cong (\sigma_X, \Sigma_X)$).

proof: By [1; 3.2.5]), for each $i \in I$, there exists a homomorphism p_i of (ψ, X) onto (ψ_i, X_i) . So, by [1; 1.6.7], for each $i \in I$, there exists a unique continuous homomorphism π_i of (σ_X, Σ_X) onto $(\sigma_{X_i}, \Sigma_{X_i})$ such that

$$\pi_i(\zeta)(p_i(x)) = p_i(\zeta(x)) \qquad (x \in X, \zeta \in \Sigma_X).$$

Suppose that $\zeta_1, \zeta_2 \in \Sigma_X$. If $\pi_i(\zeta_1) = \pi_i(\zeta_2)$ for all $i \in I$, then

$$p_i(\zeta_1(x)) = (\pi_i(\zeta_1))(p_i(x)) = (\pi_i(\zeta_2))(p_i(x))$$
$$= p_i(\zeta_2(x))$$

for all $x \in X$ and $i \in I$. Thus $\zeta_1 = \zeta_2$. Therefore the family $\{\pi_i : i \in I\}$ separates the points of Σ_X . Hence the conclusion holds ([1; 3.2.5]).

2.3.Theorem. Every compactification (ψ, X) of S has the universal E- subcompactification.

proof: Let (ϕ, Y) be a compactification of S. Suppose $\{(\psi_i, X_i) : i \in I\}$ is a family of Esubcompactifications of (ϕ, Y) , and (ψ, X) is the subdirect product of this family. We show that (ψ, X) is an E- subcompactification of (ϕ, Y) , and so it is the universal E- subcompactification of (ϕ, Y) . To see this, for each $i \in I$, we have $(\sigma_{X_i}, \Sigma_{X_i}) \leq (\phi, Y)$. So, by property of subdirect product, we have $\forall (\sigma_{X_i}, \Sigma_{X_i}) \leq (\phi, Y)$. By previous lemma $\forall (\sigma_{X_i}, \Sigma_{X_i}) \cong (\sigma_X, \Sigma_X)$. Hence $(\sigma_X, \Sigma_X) \leq (\phi, Y)$. This means that (ψ, X) is an *E*- subcompactification of (ϕ, Y) .

References :

- [1] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on semigroups, Function spaces, Compactifications, Representations, Wiley, New York, (1989).
- [2] A. Fattahi, M. A. Pourabdollah and A. Sahleh, *Reductive Compactifications of Semi*topological Semigroups, Internat. J. Math. & Math. Sci. Vol.2003, No.51, 3277-3280.
- [3] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, New York, (1976).
- [4] H. D. Junghenn, Distal compactifications of semigroups, *Trans. Amer. Math. Soc.* 274(1982) 379-397.
- [5] J. D. Lawson, Flows and compactifications, J. London Math. Soc. 46(1992) 349-363.