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Abstract: In this article we consider the enveloping semigroup of a flow generated by the action of a
semitopological semigroup on any of its semigroup compactifications, and we define the notion of E-
compactification and E- subcompactification and also we get the universal E- subcompactification.
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1 Introduction

A semigroup S is called right reductive if

for each a, b ∈ S, from at=bt for every t ∈ S,

it follows that a=b. For example, all right

cancellative semigroups and semigroups with a

right identity, are right reductive. Throughout

this article S will be a semitopological semi-

group. By a semigroup compactification of S

we mean a pair (ψ,X), where X is a compact

Hausdorff right topological semigroup, and

ψ : S −→ X is a continuous homomorphism

with dense image such that, for each s ∈ S,

the mapping x−→ψ(s)x : X−→X is continuous.

The C∗-algebra of all bounded complex-valued

continuous functions on S, will be denoted by

C(S). For C(S) the left and right translations,

Ls and Rt, are defined for each s, t ∈ S by

(Lsf)(t) = f(st) = (Rtf)(s), f ∈ C(S).
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The subset F of C(S) is said to be left trans-

lation invariant, if for all s ∈ S,LsF ⊆ F . A

left translation invariant unital C∗-subalgebra F
of C(S) is called m-admissible if the function

s−→Tµf(s) = µ(Lsf) is in F for all f ∈ F
and µ ∈ SF :=the spectrum of F . Then the

product of µ, ν ∈ SF can be defined by µν =

µ ◦ Tν and the Gelfand topology on SF makes

(ε, SF ) a semigroup compactification (called the

F-compactification) of S, where ε : S−→SF is the

evaluation mapping.

Some m-admissible subalgebras of C(S) are:

LMC := left multiplicatively continuous func-

tions, D :=distal functions, MD :=minimal dis-

tal functions, and SD :=strongly distal functions.

We also write GP for MD ∩ SD; and we define

LZ := {f ∈ C(S); f(st) = f(s) for all s, t ∈ S}.
For a discussion of the universal property of the

corresponding compactifications of these function

algebras see [1] and also [4].

Let (ψ,X) be a compactification of S, then the

mapping σ : S × X−→X, defined by σ(s, x) =
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ψ(s)x, is separately continuous and so (S,X, σ) is

a flow. If ΣX denotes the enveloping semigroup

of the flow (S,X, σ) (i.e., the pointwise closure of

semigroup {σ(s, .) : s ∈ S} in XX) and the map-

ping σX : S−→ΣX defined by σX(s) = σ(s, .) for

all s ∈ S, then (σX ,ΣX) is a compactification of

S (see [1;1.6.5]).

One can easily verify that ΣX = {λx : x ∈ X},
where λx(y) = xy for each y ∈ X. If we define

the mapping θ : X −→ ΣX by θ(x) = λx, then θ

is a continuous homomorphism with the property

that θ ◦ ψ = σX . So (σX ,ΣX) is a factor of

(ψ,X), that is (ψ,X) ≥ (σX ,ΣX). By definition,

θ is one-to-one, if and only if X is right reductive.

So we get the next proposition, which is an

extension of the Lawson’s result [5; 2.4(ii)]:

1.1.Proposition. Let (ψ,X) be a com-

pactification of S. Then (σX ,ΣX) ∼= (ψ,X), if

and only if X is right reductive.

A compactification (ψ,X) is called reductive, if

X is right reductive. For example, the MD, GP
and LZ-compactifications, are reductive. A com-

pactification (ψ,X) is called E- compactification

if (ψ,X) ∼= (σY ,ΣY ) for some compactification

(θ, Y ) of S. Clearly every reductive compactifi-

cation is E- compactification but the converse is

not, in general true. For example see [2; 2.2].

It is easy to see that (σSLMC ,ΣSLMC ) is the

universal E- compactification of S.

2 E- Subcompactification

2.1.Definition. Let (ψ,X) be a compactifica-

tion of S. We say that (θ, Y ) is an E- subcom-

pactification of (ψ,X) if (σY ,ΣY ) ≤ (ψ,X).

By the above, every compactification is also E-

subcompactification of itself. Now we are going

to construct the universal E- subcompactification

of S. For this end we need the following lemma.

2.2.Lemma. Let (ψ,X) be the subdirect

product of the family {(ψi, Xi) : i ∈ I}
of compactifications of S. Then (σX ,ΣX)

is isomorphic to the subdirect product

of the family {(σXi
,ΣXi

) : i ∈ I} (i.e.,

∨(σXi
,ΣXi

) ∼= (σX ,ΣX)).

proof: By [1; 3.2.5]), for each i ∈ I, there exists

a homomorphism pi of (ψ,X) onto (ψi, Xi) . So,

by [1; 1.6.7], for each i ∈ I, there exists a unique

continuous homomorphism πi of (σX ,ΣX) onto

(σXi
,ΣXi

) such that

πi(ζ)(pi(x)) = pi(ζ(x)) (x ∈ X, ζ ∈ ΣX).

Suppose that ζ1, ζ2 ∈ ΣX . If πi(ζ1) = πi(ζ2) for

all i ∈ I, then

pi(ζ1(x)) = (πi(ζ1))(pi(x)) = (πi(ζ2))(pi(x))

= pi(ζ2(x))

for all x ∈ X and i ∈ I. Thus ζ1 = ζ2. Therefore

the family {πi : i ∈ I} separates the points of

ΣX . Hence the conclusion holds ([1; 3.2.5]).

2.3.Theorem. Every compactification (ψ,X) of

S has the universal E- subcompactification.

proof: Let (φ, Y ) be a compactification of S.

Suppose {(ψi, Xi) : i ∈ I} is a family of E-

subcompactifications of (φ, Y ), and (ψ,X) is the

subdirect product of this family. We show that

(ψ,X) is an E- subcompactification of (φ, Y ),

and so it is the universal E- subcompactification

of (φ, Y ). To see this, for each i ∈ I, we have

(σXi
,ΣXi

) ≤ (φ, Y ). So, by property of subdirect
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product, we have ∨(σXi ,ΣXi) ≤ (φ, Y ). By

previous lemma ∨(σXi
,ΣXi

) ∼= (σX ,ΣX). Hence

(σX ,ΣX) ≤ (φ, Y ). This means that (ψ,X) is an

E- subcompactification of (φ, Y ).
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