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ABSTRACT
The author shows how the copulas can be used to ana-
lyze repeated measurements with missing data. The main
problem in practice is that there does not exist any theo-
retical joint distribution describing the repeated measure-
ments, and then the copula function is a good tool to create
the joint distribution. As the measurements are, in general,
dependent, the conditional distribution of measurement in
momentk, conditioned by the past measurements, might be
highly informative for forecasting missing values. Imputa-
tions can be performed using conditional models. A simple
method for imputation is presented using normal copula.
The explicit formula to impute dropouts has been derived
in the case of compound symmetry. The result can be easily
applied to non-normal marginals using normalizing trans-
formation.
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1 Introduction

The paper is focused on te repeated measurements study
with missing data. Let us have a process with outcome
variable measured at time points1, . . . ,m. Denote the out-
come measured at time pointj by Xj and suppose it has
distributionFj from the familyP, j = 1, . . . ,m. We do
not put any restrictions on the familyP of marginal distrib-
utions. Usually, the exponential family is used.

The measurements form anm-variate random vector
X = (X1, . . . , Xm). In general the distribution of the vec-
tor X is not known. Often it happens that it is possible
to determine a model familyP for marginal distributions
Xj , but there does not exist any known family of multivari-
ate distributions suitable to describe the joint distribution
of the vectorX. In practice, in most cases the multivariate
normal distribution is used because of its easy definition
via correlation structure. Nevertheless, often the marginal
distributions do not fit with assumption of normality. As
a novelty, Lindsey [1] suggested to use the skew Laplace
and the multivariate t-distribution, which are not members
of the exponential family.

Assume we have a sample of sizen of measure-
mentsXj ; then the data form a matrixX = {xij}, i =

1, . . . , n; j = 1, . . . , m. In practice, it often happens that
not all the measurements are known, there are some miss-
ing values or dropouts in the matrixX.

Common approach to treating missing data in re-
peated measurements study is to consider dropouts, where
sequences of measurements on some units terminate pre-
maturely. In the case of dropouts, the missingness pattern
is said to be monotone if, whenever an observationxik is
missing,xis is also missing for alls > k. All observations
on a subject are obtained until a certain time point, after
which all measurements are missing. Letnj denote the
number of objects for whichXj is observed. If the pattern
is monotone, thennj ≥ nj+1, j = 1, . . . ,m− 1.

Let k be the time point at which the dropping out
process starts. Without restrictions we can assume that un-
til the time pointk−1 we have complete data,ni = n, i =
1, . . . , k − 1.

Usually, dropouts are to be distinguished from inter-
mittent missing values, where an observed sequence has
some gaps, i.e. the set of intended times of measurements
is not common to all units (unbalanced data).

The classification of dropout processes is given by
Rubin (see for example, [2], [3]), which includes a hier-
archy of missing values mechanism:

• Completely random dropout (CRD) – dropout and
measurement processes are independent, so dropouts
are simply random missing values;

• Random dropout (RD) – dropout process depends on
observed measurements;

• Informative dropout (ID) – dropout process depends
additionally on unobserved measurements, i.e. those
measurements that would have been observed if the
subject had not dropped out.

Lindsey [4] proposed another typology of random-
ness for dropouts that relies on using a survival model for
the dropout process. In terms of a stochastic process, drop-
ping out is a change of state. In this case, the repeated
measurements data and dropout process can be modelled
simultaneously, each conditional on the complete previous
history. According to Lindsey, types of dropout mecha-
nisms are based on the risk of dropout.

If a dropout process is random, then a valid analysis
can be performed using a likelihood method that ignores



the dropout mechanism: the parameters describing the
measurement process are functionally independent of the
parameters describing the dropout process. However, it
may be difficult a priori to justify the assumption of ran-
dom dropout.

We are concerned with missing outcome variable, i.e.
measurements that potentially could be obtained. In many
theoretical and practical tasks it is necessary to know the
values of missing measurements, and there exists a long list
of single and multiple imputation methods such as condi-
tional and unconditional means, hot deck, linear prediction
etc. Most imputation methods require the CRD assumption
andad hocadjustments to yield satisfactory point estimates
[5].

We use the idea of imputing a missing value based
on conditional distributions. The problem is that the joint
distribution may be unknown, but using the copula func-
tion it is possible to find approximate joint and conditional
distributions.

The aim of this work is, using the fact that all impu-
tation models are principally multivariate predictive mod-
els, to implement the concept of copula for developing a
methodology for solving of the imputation problem.

2 Basic definitions

We consider a sequence of measurements up tok obser-
vationsX1, X2, . . . , Xk, wherek is the dropout point and
vector H = (X1, X2, . . . , Xk−1) is called history (or
past) of measurements.

In the case of repeated measurements often the vari-
ablesXj are rather strongly dependent (due to individual
specialities of objects in the sample) and hence the vector
H contains a big amount of information about the distribu-
tion of the variableXk that can be used for forecasting the
value of the missing observation. If the joint distribution
of vectorX is known, then the conditional distribution of
Xk conditioned by the realized pastH can be used to de-
fine the estimate of missing value, its limits and measures
of variability.

We will generate the joint distribution using
some copula. Using known marginal distributions
F1(x1), . . . , Fk(xk) and a copulaC, the function

C(F1(x1), . . . , Fk(xk)) = F (x1, . . . , xk)

defines a joint distribution function [6].
If marginal distributions are continuous, then the cop-

ulaC is unique for every fixedF and equals

C(u1, . . . , uk) = F (F−1
1 (u1), . . . , F−1

k (uk)),

whereF−1
1 , . . . , F−1

k are the quantiles functions of given
marginals andu1, . . . , uk are uniform[0, 1] variables.

If the random variablesX1, . . . , Xk areindependent,
then the copula function that links their marginals is the
product copulaC(F1, F2, . . . , Fk) = F1 · F2 · . . . · Fk.

Hence, in the case of completely random dropouts (CRD)
the dropout is independent of the measurements and it is
possible to use the product copula.

If C andF1, . . . , Fk are differentiable, then the joint
densityf(x1, . . . , xk) corresponding to joint distribution
F (x1, . . . , xk) can be written as a product of the marginal
densities and the copula density ([6], [7]):

f(x1, . . . , xk) = f1(x1)× . . .× fk(xk)× c(F1, . . . , Fk),
(1)

wherefi(xi) is the density corresponding toFi and
the copula density is defined in the following way

c =
∂kC

∂F1 · · · ∂Fk
. (2)

3 Normal copula approach

In the following we will use the multivariate normal copula
([1], [7], [8], [9], [10], [11]). Multivariate normal copula
represents the dependencies between univariate marginals,
allowing any positive-definite correlation matrix. By defi-
nition, thek-variate Gaussian copula withk Gaussian mar-
ginals corresponds to thek-variate Gaussian distribution.

For instance, the bivariate normal copulaCN is de-
fined as

CN (u, v, θ) = Φ2[Φ−1
1 (u),Φ−1

1 (v), θ], (3)

whereΦ2 is the standardized bivariate normal distribution
with correlation coefficientθ andΦ1 is the univariate stan-
dard normal distribution. This notation can be easily ex-
tended to multivariate cases withθ replaced by a correla-
tion matrixR.

One possibility is to use the normal copula that creates
a multivariate distribution, generalizing normal distribution
in the following sense: the dependencies are defined by
some nonparametric measure of dependence - e.g., Spear-
man’s rho or Kendall’s tau that measure monotonic depen-
dencies and are invariant to all scale transformations. Also
the marginal distributions that are assumed to be continu-
ous can substantially differ from normal ones.

The only condition for creating the normal copula is
that the dependence matrix must be positively defined.

But, as the number of different dependence parame-
ters is in the case ofk-variate distribution isk(k − 1)/2,
usually some simple model structure describing the depen-
dence matrix are used. The most simple of them are (see
for example, [5]):

• The compound symmetrical structure: the correlation
between any two time points is the same;

• The autoregressive structure: the dependence between
observations decreases by geometric law as the mea-
surements get further in time.

In the case of repeated measurements both structures have
meaning, as the common dependence can be created by in-
dividual specialities; if there exists a time-dependent trend,



then the second model can fit. Probably, in many cases the
mixture of two models works.

Let us use now on the whole historyH of repeated
measurements. There is (at least one) subjecti such that
the measurementsX1, X2, . . . , Xk−1 are observed andXk

drops out. Corresponding marginal distribution functions
areFj(x) with density functionsfj(x) and univariate stan-
dard normal distributions correspondingly areΦ1(x) and
φ1(x), wherej = 1, . . . , k.

Let ΦN (x1, . . . , xk|µ, Σ) represent the joint multi-
variate normal distribution with meanµ and covariance ma-
trix Σ, and letφN (x1, . . . , xk|µ, Σ) represent the multivari-
ate normal density. Assuming that marginals are standard-
ized we can write correlation matrixR instead of covari-
ance matrixΣ.

Then, according to (1), we get

φN (x1, . . . , xk|R) = φ1(x1)× . . .× φ1(xk)

×cN [Φ1(x1), . . . , Φ1(xk); R∗], (4)

wherecN is the multivariate normal copula density (de-
fined by (2)) we are interested in,R∗ is matrix of depen-
dence measures, usually Spearman’sρ or Kendall’sτ .

If the multivariate normal distribution is parameter-
ized by Pearson product-moment correlationr, the formula
ρ = 6

π arcsin( r
2 ) can be used to transform the Pearson cor-

relations to the Spearman ones.

To solve the equation (4) for the copula density, we
use the normal inverse transformationΦ−1

1 . DefiningYi =
Φ−1

1 [Fi(Xi)], i = 1, . . . , k, we get following formula (see
[7], [11]):

cN [Φ1(y1), . . . , Φ1(yk); R∗] =
exp{−yT (R−1 − I)y/2}

|R|1/2
,

(5)
wherey = (y1, . . . , yk) andI is thek × k identity matrix.

For constructing a multivariate density we now use
the marginalsF1(x1), . . . , Fk(xk) and copula densitycN

from (5) as a dependence function. Thus, we obtain the
joint density, as follows.

φN (x1, . . . , xk|R) = φ1(x1)× . . .× φ1(xk)×

×exp{−QT
k (R−1 − I)Qk/2}
|R|1/2

. (6)

whereQk = (Φ−1
1 [F1(x1)], . . . , Φ−1

1 [Fk(xk)]).

3.1 Conditional density

To find the formula for imputation we should calculate the
conditional density of the variableXk (having the dropout)
using the historyH.

Taking into consideration the history, the whole cor-
relation matrix can be partitioned as

R =
(

Rk−1 r
rT 1

)
,

whereRk−1 is the correlation matrix of the historyH =
(X1, . . . , Xk−1), andr = (r1k, . . . , r(k−1)k)T is the vec-
tor of correlations between the history and the time point
k. If we suppose, for example, compound symmetry, then
the correlations between all time points are equal, and
r = (ρ, . . . , ρ)T , whereρ can be estimated byRk−1.

Taking into consideration the definition of conditional
density and expression (6), we get the conditional density
as follows:

f(xk|H;R∗) = fk(xk)

× φk(Qk; R)
φ1(Φ−1

1 [Fk(xk)])× φk−1(Qk−1;Rk−1)
.

where Qk−1 = (Φ−1
1 [F1(x1)], . . . , Φ−1

1 [Fk−1(xk−1)]).
Substitution into the expression above normal densities and
considering the notationYi = Φ−1[Fi(Xi)] results in

f(yk|H; R∗) = φ1(yk)

× exp{−1
2
[
(yk − rT R−1

k−1(y1, . . . , yk−1)T )2

(1− rT R−1
k−1r)

− y2
k]}

×(1− rT R−1
k−1r)

−1/2. (7)

3.2 Imputation

To impute the dropouts we should find the maximum like-
lihood estimate, i.e. maximize equation (7) with respect to
yk.

Taking into consideration the whole history consist-
ing of (k − 1) measurements, the followingformula for
imputationyk is valid:

ŷk =
ρ

1 + (k − 2)ρ

k−1∑

i=1

yi. (8)

Formula (8) is usable for any marginals in the case of
compound symmetry and gives transformed imputing value
yk. To impute the initial value we have to use the inverse
transformationxk = F−1[Φ(yk)].

Detailed derivation of the formula (8) is given in Ap-
pendix A.

If we have correlated dataX1, . . . , Xk from a distrib-
ution with continuous marginsF1, . . . , Fk, then above de-
rived normal-copula-based approach to point estimation of
missing value requires the following steps.

1. Estimate marginal distributions either using paramet-
ric or non-parametric procedure.

2. Estimate the correlation structure of data. If we can
accept the hypothesis about the compound symmetry
structure, then go on, if not, then do not use this ap-
proach.

3. If the marginals are not normal, use the normalizing
transformationYi = Φ−1(Fi(Xi)).



4. Estimate the missing value using the formula (8).

5. Use inverse transformation to get imputed valueXk =
F−1[Φ(Yk)].

4 Illustration

To illustrate the normal-copula approach in the case of
strongly skewed marginals andCRD andID dropouts the
following data are generated: the three random variables
X1, X2, X3 with constant correlationsr = 0.7 (compound
symmetry).

That meansX = (X1, X2, X3) has 3-variate normal
distribution. To get a skewed non-normal marginals the
variables are transformed using following rules:

1. For maximum valueyi = max{Xi}, yi = C1yi.

2. For every positive valueyi = C2yi.

The constants are chosenC1 = 10, C2 = 5.
The transformed data are extended to positive direc-

tion. Assume the data represent repeated measurements,
when the sample sizen = 25. Due to small sample size
every value is important, hence we have to impute the miss-
ing values.

The dropouts occur at last time point (in random vari-
ableX3 ) and we examine 2 cases: 1) the maximal value is
dropped out (case ofID), 2) the random value is dropped
out (case ofCRD).

Two methods for imputation are used: 1) imputation
by linear predictionX3 = β0X1 + β2X2 and 2) imputa-
tion by formula (8). To compare the results the average
bias is calculated as average difference between observed
values and imputed values:Bias1 is the bias using linear
prediction andBias2 is the bias when using formula (8)
for imputation. Also the standard deviations of estimates
have been calculated (denoted byStdDev1 andStdDev2

accordingly). Results are given in units of standard devia-
tion of given marginals.

The results of 50 simulations are in following table.
Table 1.
Dropout Bias1 StdDev1 Bias2 StdDev2

Maximal 2.4958 1.5424 2.0671 1.2437
Random -0.4343 0.7005 -0.2322 0.3832

From here it follows that the imputation of the max-
imal value causes rather large bias, the result that is not
surprising. The other conclusion is that using formula (8)
for imputation gives somewhat better results, in both cases
the imputation via copula gives more stabile solution with
less bias.

5 Remarks and conclusions

The normal copulais useful because of easy implemen-
tation in practice and simple simulation method. However,

there is increasing evidence indicating that normal assump-
tions are inappropriate in the real world. In general a mul-
tivariate normal distribution is not ideal and is valid when
only measurement error is present, ignoring or poorly mod-
elling the dependence between repeated measurements (see
for example [1]).

To resolve this problem some other copulas for the
joint distribution can be applied. For example, Lindsey
and Lindsey [1] suggested Student’s t-distribution, power-
exponential or skew Laplace distribution for modelling re-
peated responses instead of normal distribution. Vanden-
hende and Lambert [12] tested several marginal distribu-
tions, Cauchy, Gamma, log-normal, for dropout model.

An important class of parametric copulas to model
non-normal data isthe Archimedean copula([6], [13]).
Vandenhende and Lambert [12] usedFrank’s copulafrom
this family to model the dependence between dropout and
responses.

Members of Archimedean copula class are con-
structed by a continuous, strictly decreasing, and convex
functionφ such that for example in bivariate case

C(u, v) = φ−1{φ(u) + φ(v)}

and φ is called thegeneratorof the copula. Different
choices of generator yield several important families of
copulas. If we assume an Archimedean form of the cop-
ula, then the conditional distribution ofXk given pastH is
(see for example, [14])

F (xk|H) =
φ−1{ck−1 + φ(Fk(xk))}

φ−1(ck−1)
,

whereck = φ[F1(x1)] + . . . + φ[Fk(xk)].
Genest [15] gave the conditional mean function in the

case of Frank’s copula (with generator functionφ(t) =
ln exp−αx−1

exp α−1 ) as follows

E(xk|H) =
(1− e−α)xe−αx + e−α(e−αx − 1)

(e−αx − 1)(e−α − e−αx)
.

A general copula-based approach to point estimation
of missing value requires following steps.

1. Modelling univariate marginal distributions either
parametrically or non-parametrically. The copula
method works with any given marginal distributions
i.e. it does not restrict the choice of margins.

2. Specifying a copula. Because copulas are paramet-
ric families, the standard technique such as maximum
likelihood can be used for estimation. For selecting
the best-fitting copula some Goodness-of-Fit statistics
can be used (see for example [9])

3. Find the conditional density.

4. Estimate the conditional mean (or corresponding me-
dian etc.), take it for imputed value.
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Appendix A – Formula for imputation

In this appendix we derive formula (8) for imputation.
Consider the conditional density given by (7):

f(yk|H;R∗) =

= φ1(yk)× exp{− 1
2 [

(yk−rT R−1
k−1(y1,...,yk−1)

T )2

(1−rT R−1
k−1r)

− y2
k]}

×(1− rT R−1
k−1r)

−1/2.

We should find the maximum likelihood estimate for
yk. It is easy to see, that when maximizing the last equation
with respect toyk, we get

yk = rT ·R−1
k−1 · Y ∗

k−1, (9)

whereY ∗
k−1 = (y1, . . . , yk−1).

Suppose now compound symmetry, thenr =
(ρ, . . . , ρ)T and

Rk−1 =




1 ρ . . . ρ
ρ 1 . . . ρ
...

. ..
ρ ρ . . . 1




is the(k − 1)× (k − 1) correlation matrix for history, and
its inverse isR−1

k−1.
To simplify formula (9), we should first find the ele-

ments ofR−1
k−1. Due to special form ofRk−1, the inverse

matrix is symmetrical with equal elementsa on the main
diagonal and equal off-diagonal elementsb, the following
forms are well-known.

a = 1 +
(k − 2)ρ2

1− (k − 2)ρ2 + (k − 3)ρ
,

b = − ρ

1− (k − 2)ρ2 + (k − 3)ρ

and, hence,

a + (k − 2)b =
1

1 + (k − 2)ρ
.

On the other hand, formula (9) can be rewritten as

yk = ρ×(1, . . . , 1)×




a b . . . b
b a . . . b
...

. . .
b b . . . a


×(y1, . . . , yk−1)T

= ρ× [a + (k − 2)b]×∑k−1
i=1 yi.

Taking into account the last result we get formula (8):

ŷk =
ρ

1 + (k − 2)ρ

k−1∑

i=1

yi.
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