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Abstract: A new method for the study of molecular phylogenetics based on fuzzy c-means clustering of
Markov models is proposed. This approach is able to cluster whole sequences or genomes into groups whose
boundaries overlap, and to reconstruct the phylogenetic trees that graphically describe the evolutionary
relationships between organisms. The method is applied to examine the similarities and evolutionary rela-
tionships of a large data set of complete mammalian mitochondrial genomes.
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1. Introduction

By comparing two or more sequences or genomes one
is able to infer the evolutionary relationships between
them. The comparison is based on the assumption
that two sequences that diverged in the recent past
would be expected to be more similar than a pair of
sequences whose common ancestor is more ancient.
The objective of most molecular phylogenetic anal-
yses is to reconstruct the tree-like pattern that de-
cribes the evolutionary relationships between organ-
isms [4]. A phylogenetic tree reconstruction (PTR)
can be carried out from comparative analysis of data
such as protein and DNA sequences. However, DNA
yields more phylogenetic information than protein
because variability in both the coding and non-coding
regions of the genome can be examined [4].

Conventionally, a DNA-based phylogenetic tree re-
construction involves the alignment of the DNA se-
quences so that nucleotide differences can be scored
to obtain the comparative data; this is followed by
conversion of the comparative data into a recon-
structed tree. There are two categories of method for
the reconstruction of phylogenetic trees using molec-
ular data: distance-based, and character-based (max-
imum parsimony) [18]. Distance-based methods con-
vert the sequence information into a distance ma-
trix that show the evolutionary distances between
all pairs of sequences in the data set. These evo-
lutionary distances are used to establish the lengths
of the branches connecting two sequences in the re-
constructed tree.

The earliest described distance-based method for tree

reconstruction is the unweighted-pair-group method
using arithmetic averaging (UPGMA) [26]. The UP-
GMA method requires a distance matrix and be-
gins by clustering the two species with the small-
est distance, separating them into a single, compos-
ite group. After the first clustering, a new distance
matrix is calculated with the distance between the
new group. The species separating by the small-
est distance in the new matrix are then clustered
to make another new composite species. This iter-
ative procedure is carried out until all species have
been grouped. If scaled branch lengths are to be
used on the tree to represent the evolutionary dis-
tance between species, branch points are located at
a distance halfway between each of the species being
grouped. Another popular distance-based approach
is the neighbor-joining method developed by Saitou
and Nei [24]. To start the reconstruction, this method
assumes that there is just one internal node from
which branches leading to all species coming off in
a star-like tree. A pair of sequences (species) is cho-
sen at random, removed from the star, and attached
to a second internal node connected by a branch to
the center of the star. The distance matrix is then
used to calculate the total branch length in the new
tree. The sequences are then returned to their origi-
nal positions and another pair attached to the second
internal node, and the total branch length is again
calculated. The process is repeated until all possible
pairs have been examined, and the pair that makes
a tree with the overall smallest branch lengths are
grouped as neighbors, so that a new star with one
branch fewer than the original can be created, and
a new distance matrix generated. The whole process



of pair selection and branch-length calculation is iter-
ated so that all subsequent neighbors are found that
minimize the total length of branches on the tree.
The result is a complete reconstructed phylogenetic
tree.

The maximum likelihood methods [12, 13, 14] rep-
resent an alternative statistical approach of phyloge-
netic tree reconstruction. This approach computes
the probabilities for every individual nucleotide sub-
stitution in a set of sequence alignments. The tree
with the highest aggregate probability is the most
likely true phylogenetic tree.

The advantage of the distance-based approach is that
the handling of data is relatively easy because the in-
formation of multiple alignment has been reduced to
its simplest form. However, the distance-based ap-
proach attends to a few or just one of many possible
phylogenetic trees by considering the overall similar-
ities between sequences and progressively grouping
those that are most alike [18]. For the maximum
likelihood methods, the calculation of the probabili-
ties is complicated by the fact that the sequence of the
common ancestor to the sequences being considered
is generally not known, and the number of possible
trees for even a modest number of sequences makes
the computation intensive. The character-based or
maximum parimony method [16] assumes that evo-
lution follows the shortest possible path and that
the correct phylogenetic tree is the one that requires
the minimum number of nucleotide changes to pro-
duce the observed differences between the sequences.
Therefore the trees are randomly constructed and
the number of nucleotide changes calculated until
all possible topologies have been considered, with
the one requiring the smallest number of steps the
most likely inferred phylogenetic tree. The maxi-
mum parsimony method is more rigorous in compar-
ison with the neighbor-joining method. However, the
parsimony analysis becomes computationally inten-
sive with multiple alignments involving 20 or more
sequences with just five sequences there are only 15
possible unrooted trees, for 10 sequences there are
2,027,025 unrooted trees, and for 50 sequences the
number of trees exceeds the number of atoms in the
universe [11].

One of the most popular software packages for phylo-
genetic analysis is Clustal, which was orginally devel-
oped in 1988 and subsequently upgraded [17]. Clustal
primarily carries out multiple alignments of protein
or DNA sequences, and works effectively provided
that the sequences do not contain extensive internal
repeat motifs. Clustal is usually used in conjunc-
tion with a program for tree reconstruction such as
the neighbor-joining method. More comprehensive
software packages that utilize a variety of different

methods for tree reconstruction include PAUP [27],
and PHYLIP [15].

Due to the limitations of phylogenetic tree recon-
struction using mutiple sequence alignments, partic-
ularly with whole genome phylogeny, some computa-
tional methods have been developed to compute the
distance matrices without the use of a multiple se-
quence alignment. Li et al. [19] applied the notion of
Kolmogorov complexity to introduce a distance mea-
sure between two unaligned sequences and evaluated
the method by comparing a set of whole mitochon-
drial genomes. Almeida et al. [1] introduced the
chaos game representation for the analysis of genomic
sequences. Vinga et al. reviewed several alignment-
free methods [28], and evaluated word composition
distance methods for the recognition of SCOP rela-
tionships [29]. Otu and Sayood [22] recently proposed
a similar approach to the distance measure by Li et
al.. This method calculates a distance between two
sequences based on the Lempel-Ziv complexity. How-
ever, the similarity or dissimilarity measures obtained
from these alignment-free methods are only able to
be interpreted in conjuction with other program that
analyze distance-matrix data for phylogenetic tree re-
construction such as the neighbor-joining [24], UP-
GMA [26], and hypercleaning [5]. To date, however
no single ideal method for phylogenetic tree recon-
struction has been developed.

In this paper, a new method for DNA-based phy-
logenetic tree reconstruction is presented using the
concepts of Markov models, and the fuzzy c-means
algorithm. Unlike clustering data sets with features,
this proposed method transforms each nucleotide se-
quence into a Markov model, and then iteratively ap-
plies the fuzzy c-means to cluster the sequences rep-
resented by their corresponding Markov models into
exhaustive sub-groups. The proposed method can re-
construct a phylogenetic tree of complete mitochon-
drial genomes without the requirements of sequence
alignment and programs for distance-matrix data.

2. Markov Models for DNA Sequences

Let {tk} for k = 0, 1, 2, . . ., be the discrete points in
time, and ξtk

be the random variable that character-
izes the state of the system at tk. Let s1, s2, . . . , sN

represent the finite states of a system at any time.
The system may be in any of these states at time t0.
Let πi, 1 ≤ i ≤ N , be the initial probability that the
system is in state si at t0.

We now define aij = P{ξtn = j|ξtn−1 = i}, as the
first-order transition probability of going from state i
at tn−1 to state j at tn and assume that these prob-
abilities are stationary over time. Thus these transi-
tion probabilities going from si to sj can be expressed
as



A = [aij ], 1 ≤ i, j ≤ N (1)

The matrix A is called a stochastic matrix because
all the transition probabilities aij are fixed and inde-
pendent of time, and must satisfy the following con-
ditions:

aij ≥ 0 ∀i, j (2)

N∑
j=1

aij = 1 ∀i (3)

The transition matrix A and the initial probability
vector π = {πi, 1 ≤ i ≤ N} associated with states
{si, 1 ≤ i ≤ N} completely define a Markov chain
that can be denoted in a compact form as

λ = (A, π) (4)

With the concept of a Markov chain defined, we now
wish to study the behavior of unaligned nucleotide
sequences using Markov chain analysis. Let G be a
sequence of nucleotides, and {a,c,g,t} ∈ G be the set
of four different bases used in DNA molecules: ade-
nine (a), cytosine (c), guanine (g), and thymine (t).
To model the information contained in G in the con-
text of a Markov chain, we define these four bases
as the four Markov states, thus giving the number of
states N = 4. The initial probability πi is computed
as the frequency (number of times) the system is in
state i at time t0. There is one sequence for each
Markov model, thus the initial probabilities can be
assumed to be equiprobable, that is

πi =
1
N

∀i (5)

The state transition probabilities can be estimated as

aij =
Nij

Ni
, 1 ≤ i, j ≤ N (6)

where Nij is the number of transitions from state
(base) i to state j, and Ni is the number of transitions
from state i.

Since the initial probabilities {πi} for an unaligned
sequence of nucleotides are assumed to be equiproba-
ble, the distance (dissimilarity) measure between two
Markov models λ1 and λ2 can be defined in the con-
text of the state transition probability matrices using
a Euclidean norm:

dE(λ1, λ2) ≈ dE(A1,A2)
= ||A1 − A2||2

=


 1

N2

N∑
i=1

N∑
j=1

(a(1)
ij − a

(2)
ij )2




1
2

(7)

where a
(1)
ij ∈ A1, and a

(2)
ij ∈ A2.

3. Fuzzy Clustering of Markov Models

Let J : M × �cp → �+, and U ∈ M be a fuzzy
c-partition of a collection of Markov models having
been defined in (4). That is X = (λ1, λ2, . . . , λn) ≈
(A1,A2, . . . ,An). To find the fuzzy prototypes or
cluster centers of {Ak, k = 1, . . . , n}, the fuzzy c-
means clustering algorithm aims to minimize the fol-
lowing objective function [2]:

J(U,V) =
n∑

k=1

c∑
i=1

(uik)m(dik)2 (8)

where m ∈ [1,∞) is the weighting exponent; and
particularly when m = 1, the FCM becomes identical
to the hard c-means algorithm.

V = (V1,V2, . . . ,Vc) ∈ �cp (9)

in which Vi ∈ �p is the cluster center or prototype
of ui, 1 ≤ i ≤ c;

(dik)2 = (d(Ak,Vi))2 (10)

in which d(·) can be dE being defined in (7).

The summation of the fuzzy membership grades is
subject to the unity constraint:

c∑
i=1

uik = 1, ∀k (11)

Conditions for the objective function J(U,V) being
defined in (8) to reach a minimum can be found by
forming a new function J∗ as follows:

J∗(U,V, α) = J(U,V) +
n∑

k=1

αk(
c∑

i=1

uik − 1) (12)

where αk, k = 1, . . . , n are the Lagrange multipliers
for the n constraints expressed in (11).

After some mathematical rearrangements and differ-
entiating J∗ with respect to all input arguments giv-
ing

Vi =
∑n

k=1(uik)mAk∑n
k=1(uik)m

(13)

and

uik =
1

∑c
j=1

(
dik

djk

)2/(m−1)
(14)

Thus, the FCM for clustering Markov-model based
sequences has now been described.



It has been mentioned in the description of FCM that
c, the number of clusters, needs to be given. In many
practical cases, c is unknown. It is reasonable to ex-
pect cluster substructure at more than one value of
c, and therefore necessary to estimate the most plau-
sible value of c for the cluster analysis. This problem
is known as cluster validity [10]. It is very difficult to
formulate the cluster validity problem in a mathemat-
ically tractable manner, because the basic question
is imposed on the definition of a cluster. For fuzzy
clustering, one should examine which pairs of fuzzy
groups/classes overlap, and this leads to the question
of how fuzzy a fuzzy c-partition is. A heuristic so-
lution to this problem is to calculate the measure of
fuzziness in U, and then assign c as the most valid
value that has the least fuzzy partitions.

The first functional designed for cluster validity mea-
sure is the partition coefficient [3]. This partition
coefficient of a fuzzy c-partition of U ∈ M of X is
expressed as

F (U; c) =
1
n

n∑
k=1

c∑
i=1

(uik)2 (15)

Another equivalent expression for (15) that empha-
sizes various properties of F is the Euclidean inner
product for two matrices I, J ∈ Vcn is < I,J >=
Tr(IJT ), where Tr is the trace of a matrix, and JT is
the transpose of J. And (15) has alternative forms

F (U; c) =
Tr(UUT )

n
=

< U,U >

n
=

||U||2
n

(16)

Now it can be analyzed that: if F (U; c) = 1 then
U contains no fuzzy clusters (U consists of only ze-
ros and ones); if F (U; c) = 1/c (all elements in U
is equal to 1/c) then U is completely fuzzy; and in
general 1/c ≤ F (U; c) ≤ 1. As F (U; c) increases, the
partition of the data sets is more effective. Thus the
formal strategy for selecting the most valid c∗ is as
follows. Let Ωc represents any finite set of optimal
U’s ∈ M , and c = 2, 3, . . . , n − 1. The optimal c∗ is
determined by direct search

c∗ = arg max
c

[max
Ωc

F (U; c)] (17)

Fuzzy c-partitions can also be formulated using the
concept of Shannon’s entropy [25, 9], because the
fuzzy membership grades in U subjected to the con-
straint (11) are identical to the probabilities of the
Shannon’s entropy S:

S = −
∑

i

pi logy(pi) (18)

where logarithmic base y ∈ (1,∞) and pi logy(pi) = 0
whenever pi = 0.

As an alternative, the entropy-based partition coeffi-
cient of any fuzzy c-partition U ∈ M of X is given
by [2]

H(U; c) = − 1
n

n∑
k=1

c∑
i=1

uik logy(uik) (19)

where logarithmic base y ∈ (1,∞) and
uik logy(uik) = 0 whenever uik = 0.
Using the partition entropy criteria, the optimal c∗ is
given by

c∗ = argmin
c

[min
Ωc

H(U; c)] (20)

4. Fuzzy Phylogenetic Tree

After carrying out the fuzzy clustering process, the
sequences under study can be grouped into fuzzy
clusters. However, we wish to further cluster these
subgroups according to the concept of cluster valid-
ity, until all sequences can be split into a cluster of
at most two sequences after a fuzzy-hardening pro-
cess (the term “fuzzy-hardening” is equivalent to “de-
fuzzification”, which means the membership value of
a sequence belonging to a fuzzy cluster is assigned to
unity if it is maximum with respect to other fuzzy
clusters; otherwise it is zero). In other words, we
perform a top-down fuzzy clustering approach to ex-
haustively identify all fuzzy subgroups at the level
when no further clustering is allowed, that is when
the number of “data points” is at most three. The
information obtained at this level will be utilized for
the tree reconstruction using a bottom-up approach.

Let Ωl = {Vl
i, i = 1, 2 . . . , cl} be the space of fuzzy

clusters obtained at nested or hierarchical level l, l =
1, 2, . . . , L. That is ΩL ⊂ ΩL−1 ⊂ ΩL−2 ⊂ . . . ⊂ Ω1.
The distance between two groups of fuzzy clusters in
Ωl, denote as Gl

1 and Gl
2, can be determined as

dE(Gl
1,G

l
2) = dE(Ḡl

1, Ḡ
l
2) (21)

where dE has been defined in (7), and

Ḡl
1 =

1
|Gl

1|
cl∑
i

Vl
i (22)

in which |Gl
1| is the cardinality of Gl

1, Vl
i is a fuzzy-

hardening cluster center of Gl
1, Ḡl

1 = Vl
1 if |Gl

1| = 1.

Using (21), our method joins the fuzzy clusters based
on the minimum distance in the same way as the UP-
GMA approach does. This cluster joining is carried
out in a hierachical, bottom-up manner from l = 1
to l = L; and therefore unlike the UPGMA, it does
not need to calculate the distances between the new
group and all other remaining groups in all levels, but
only between the new and other remaining clusters of
the same level.
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Figure 1. Phylogenetic tree reconstructed by fuzzy
clustering using F (U, c).

5. Results

We have selected a data set of twenty-two complete
mitochondrial genomes to test the proposed method.
This set is a subset of the larger data set that has
been the subject of many independent phylogenetic
studies [6, 7, 23, 20, 21, 19, 22], and led to conflicting
findings regarding the phylogeny of eutherian orders.
We therefore selected more distinct species to lessen
this controversial issue. The mtDNA sequences were
obtained from the public-domain database of the Na-
tional Center for Biotechnology Information (NCBI)
(www.ncbi.nlm.nih.gov/Entrez/). The genomes con-
sist primates, rodents, and ferungulates. The pri-
mates consist of human, chimpanzee, pygmy chim-
panzee, gorilla, orangutan, and gibbon. The rodent
group includes rat, mouse, dormouse, squirrel, guinea
pig, and fruitbat. The ferungulates include harbor
seal, gray seal, white rhino, indian rhino, blue whale,
finback whale, cow, sheep, donkey, and horse.
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Figure 2. Phylogenetic tree reconstructed by fuzzy
clustering using H(U, c).

The fuzzy c-means clustering of the Markov models of
the above 22 complete mtDNA genomes was carried
out in a fully automatic procedure using F (U, c) as
the partition criterion. Figure 1 shows the phyloge-
netic tree obtained from the proposed method using
F (U, c).

The fuzzy c-means clustering of the Markov models of
the above 22 complete mtDNA genomes was also car-
ried out in a fully automatic procedure using H(U, c)
as the partition criteria. Figure 2 shows the phyloge-
netic tree obtained from the proposed method using
H(U, c).

From the topologies of the two fuzzy phylogenetic
trees as shown in Figures 1 and 2, we can see that
both fuzzy clusterings using F (U, c) and H(U, c)
can cluster the primates, ferungulates, and rodents
into three groups. Both cluster-validity criteria give
the same grouping of the primates: (((chimpanzee,
pygmy chimpanzee), gorilla, human), (orangutan,



gibbon)). However, there are some differences in
the sub-groupings of the ferungulates and the ro-
dents. Whales and rhinos are closest to each other
for the clustering using F (U, c); whereas whales and
seals are for H(U, c). From Figure 2, we found
that the fuzzy clustering using the validity criterion
H(U, c) groups the squirrel with the non-murid ro-
dents: (squirrel, dormouse); whereas the squirrel is
not direclty located with the non-murid rodents, al-
though it is clustered in the rodent group. Tradi-
tional molecular phylogenetic studies hypothesized
the monophyly of Rodentia. However, this view has
been challenged by several phylogenetic analyses, and
a recent study of complete mtDNA genomes of 16
mammalian species has established that the guinea
pig is not a roden [8]. As a result, the guinea pigs is
still very controversial [23], and other alignment-free
methods [19, 22] found that the guinea pig groups
with neither the murid (mouse, rat) nor the non-
murid rodents.

6. Conclusions

We have presented a new method for clustering
biological sequences with application to the phy-
logenetic study of complete mammalian mtDNA
genomes. The proposed method can classify the rela-
tionship among primates, ferungulates, and rodents
and reconstruct the phylogenies using their complete
mtDNA genomes in a fully automatic procedure with-
out relying on any evolutionary model. The results
obtained from experiments carried out without prior
knowledge of the numbers of clusters have shown the
consistency of the proposed computational model for
molecular phylogenetics.
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