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Abstract: - The influence of cell fission on transport properties of the vessel network is studied. A simple 
mathematical model is proposed by virtue of heuristic arguments on tumor development. The constructed 
model is a modification of a so–called comb structure. In the framework of this model we are able to show that 
the tumor development corresponds to fractional transport of cells. A possible answer to the question how the 
malignant neoplasm cells appear at an arbitrary distance from the primary tumor is proposed. The model could 
also be a possible mechanism for diffusive cancers.  
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1   Introduction 
Mathematical modeling of tumor development is an 
important and new application of mathematical 
physics in biology and medicine. Although it is 
mainly aimed at diagnostics and treatments of 
cancers, the importance of tumor modeling for the 
understanding of cancer cell transport cannot be 
overestimated. Recent surveys describe different 
aspects of the modeling of tumors including solid 
tumors [1,2,3] interacting with the immune system 
[1], diffusive models related e.g. to brain tumors 
[4], process of tumor induced vascularization [5,6], 
and fractal geometry of pathological architecture of 
tumor [7], as well as chemotherapy strategies 
[1,2,3,4,6]. Tumor development consists of 
complicated processes with different stages (see 
e.g. [1]) where the tumor’s cell transport and their 
proliferation are the main contributors to the 
malignant neoplasm dissemination. Interplay 
between these two main processes of cell 
proliferation and transport leads to the essential 
complication of the mathematical modeling of the 
tumor growth [1,5].  
In the present study, we focus primarily on the 
influence of the cell fission on transport properties 
through vessel network. It could be either vascular 
or lymphatic net. Since we do not specify a kind of 
tumor, we do not specify a kind of vessels. Our 
primary interest is concerned with the main stages 
of tumor development, which are cell fission and 
transport. A simple mathematical model of a 

continuous time random walk (CTRW) [8] is 
proposed, using heuristic arguments on tumor 
development due to these two main stages. The 
constructed model is a modification of a so–called 
comb structure [9,10,11,12]. By virtue of this 
model we are able to show that the tumor 
development corresponds to fractional transport 
whose mathematical apparatus is well established 
(see e.g. [13,14,15,16,17]). Using this simplified 
approach of fractional transport, a possible answer 
to the question how the neoplasm cells appear 
arbitrarily far from the main (primary) tumor in the 
case of solid tumor [3] is proposed. The model can 
be considered as a possible mechanism for 
diffusive cancers [4] as well.  
 
2   Main Assumptions for the CTRW 
First, we consider a simplified scheme of cell 
dissemination through the vessel network. We 
consider this process by means of the following 
two steps. The first step is the biological process of 
cell fission. The duration of this stage is T . The 
second process is cell transport itself having a 
duration . Therefore the cell dissemination is 
approximately characterized by the fission time T  

and the transport time T . During the time scale T  
the cells interact strongly [18], motility of the cells 
is weak, and there is no transport (approximately). 
The duration of T  could be arbitrarily large, and it 

reaches sec [19]. During the second time 
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 interaction between the cells is weak and 
motility of the cells is determined by the velocity 

 of either vascular or lymphatic flow through the 
vessel network. It is convenient to introduce a 
“jump” length  as the distance which a cell 
travels during the time T   
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Hence, the cells form an initial packet of free 
spreading particles and the tumor development 
process consists of the following time 
consequences  

(1) (2) (3f t fT T T                                               (2) 
There are different realizations of this chain of 
times, due to different duration of T  and T i , 
where . Therefore one comes to the 
conclusion that transport is characterized by 
random values T i  which are waiting times 
between any two successive jumps of random 
length . This phenomenon is known as a 
continuous time random walk (CTRW) 
[8,13,14,15]. It arises as a result of a sequence of 
independent identically distributed random waiting 
times , each having the same probability 
density function (PDF)  with a mean 
waiting time  
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and a sequence of independent identically 
distributed random jumps, , each having 
the same PDF  with the jump length variance  
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Now we introduce the PDF  of the particle 
to be in point  at the time . Due to the 
probabilistic description that defines an appropriate 
relation between these three PDFs, 

 (see e.g. [13,15]), one obtains 
the following integral equation for :  
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with the initial condition . It is 
worth stressing that the Fourier and Laplace 
( ) transforms play an important role in the 
CTRW, since a simple form relation between 

 and  takes place in the Fourier-

Laplace space [8,13,14,15]. Suppose that 
 are well behaved functions, 

such that the Fourier-Laplace transforms could be 
applied  
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Then we deduce the integral equation (3) to the 
Montroll-Weiss equation [13,15]:  

) 1
1 ( ) ( )w p kλ
⋅
− ��

.                    (5) 

This is the main result in which we were able to 
establish a link between the tumor development and 
the CTRW process which is described by equation 
(5). In sequel we consider some examples of the 
CTRW dynamics that could be applied for different 
realization of tumor cell transport.  
 
3   CTRW Equation 
First, we present familiar examples of fractional 
transport used for a variety of realizations in 
physics, chemistry, biology and so on (see e.g. 
recent surveys [13,17]). These examples are also 
relevant to the tumor development.  
We consider a situation when σ  is finite and 
corresponds to the following distribution  

2
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while T  diverges and is described by a long–tailed 
waiting time PDF with an asymptotic behavior 

. The Laplace 

transform is . Therefore, Eq. (5) 
reads  
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where the generalized diffusion constant is now 

. The MSD is calculated from (7) via 
the following relation  
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where  means the Laplace inversion. It results 
in  

(1 )α/Γ +                  (8) 
where  is a gamma function [20]. Since 

, this is subdiffusion.  
This is an example for tumor development with 
different rates of cell dissemination through the 
fractional net of vessels embedded in the three–
dimensional (3d) space. This is relevant, e.g., for 



description of both a diffusive cancer and a primary 
solid tumor.  

 

 

3.1   Fractional Equation 

To obtain the fractional or CTRW equation which 
produces the solution (7), we introduced here the 
Riemann–Liouville fractional derivatives (see, for 
example, [13,16]) ( )

t
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where , and it also implies 
 [16]. Using this definition, we write 

the CTRW equation in the following form  
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Figure 1. A comb structure 

In this section we consider homogeneous 
convection in the  direction with a velocity 

 instead of diffusion. A random 
walk on the comb structure is described by the 
distribution function  and the 
current  
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where  For  the situation is the most simple, and 
the traps can be modeled by normal diffusion in the 
additional  direction. Therefore the fraction 
equation (10) corresponds to a so–called comb 
model.  
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 yields the following Fokker–Planck equation  
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                         (14) 3.2  Comb Model 
Fractional transport of cells, namely subdiffusion, 
could be described in the framework of the comb 
model (or CTRW structure) [9]. The comb model 
shown in Fig. 1 is an example of subdiffusive 1d 
media where CTRW takes place along the  
structure axis. Diffusion in the  direction plays 
the role of traps with the PDF of delay times of the 
form . A special behavior of 
diffusion on the comb structure is that the 
displacement in the –direction is possible only 
along the structure axis ( -axis at ). 
Therefore, cell motility is highly inhomogeneous in 
the -direction, while diffusion coefficient in the 

–direction along the teeth is a constant .   
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with the initial conditions  
and the boundary conditions on the infinities  
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Here and in sequel the primes mean the spatial 
derivatives. Applying the Laplace and Fourier 
transforms, this equation is solved exactly with the 
solution  
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and  for , since the distribution 
function must be positive. This solution describes 
diffusion of cells in the convection media with 
traps. It corresponds to the normal diffusion with 
the second moment  

1 0P = 0x <



2
2 ( ) Vx t t

D
〈 〉 = ,

, ,

                                                  (16) 

but the effective diffusion coefficient V  is 
determined by the external convective forcing V  
which is defined e.g. in (1). It is worth stressing 
that it is a nontrivial result, and therefore one 
should anticipate superdiffusion due to the 
inhomogeneous convection of the form V v  
with , and, correspondingly, subdiffusion 
when  [11,12].  
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4   Proliferation of cells 
In this section we consider a possible mechanism of 
tumor cell proliferation in the framework of the 
comb model. The total number of the transporting 
cells,  
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∞

−∞
= ∫                                         (17) 

described by the Fokker–Planck equation (14) is 
conserved. Nevertheless, the process of 
proliferation should be taken into account not only 
by counting the waiting time PDF but also due to 
the fact that number of cells is not conserved 

. Since, according the CTRW model, the 
transporting cells along the  axis do not 
proliferate, we introduce the proliferation rate as a 
change of the total number of cells with time 

, where  is taken from empirical 
(clinical) data. It is convenient to present  as 
an integration over entire configuration space 

. Then we have  
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where  is an arbitrary function which 
satisfies (18). For example, one could present it in 
the following convenient form  
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Substituting Eqs. (18) and (19) in Eq. (14) one 
obtains  
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where the boundary conditions remain the same, 
but the initial condition is . This 
condition means that the population of cells in the 
system is just due to the proliferation. For the sake 
of clarity and simplicity we take here that 

, while 
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corresponds to the standard comb model [9,10,11]. 
Performing the Laplace transform, we obtain the 
solution in the following form:  
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Then integrating both the sides of the equation over 
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Performing the Fourier transform of Eq. (22), we 
obtain, eventually, the solution in the Fourier–
Laplace domain  
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Since solution (23) is the product of two functions 
, where 

, one can use the properties 

of the Fourier and Laplace transforms for the 
convolutions. Therefore we obtain for the Laplace 
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where  is the error function [20]. To 
perform the Fourier inverse transform, we consider 
two limits of (26). The first limit is the large scale 
asymptotic, when  and . In this 
case, only the first term in (26) should be taken into 
consideration. The Fourier inversion is carried out 
exactly. One arrives at the following expression:  
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This result is valid for . As follows from 
Eq. (27), the rate of the cells dissemination on this 

x D D/��
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large scale asymptotic is of the order of 
. The second limit is . In this 

case Eq. (26) reads 
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