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Abstract

This paper is concerened with a stage structure predator-prey in-
teraction where the prey is a stage structure with two life stages im-
mature and mature. The predator consumes both the young and
adult of the prey and the prey population is more prone to predator
at higher densities. Local and global stabilities of the equilibrium sets
are discussed. With harvesting for the mature population we obtain
conditions for a threshold of the harvesting for sustainable yield.
Keywords: Stage structure, Local stability, Global stability, Op-

timal harvesting, Switching

1 Introduction

It is now recognized that the predator prefers to eat the prey species according
to age, size, weight, numbers, etc. Several models have been put forward
where a predator prefers to catch the prey species that is most abundant one
at that time (Stephens and Kreb 1986). When a prey species is of small size,
with little or insignificant defence capability with respect to predator then a
predator catches a member of given species proportional to their abundances.
The predator feeds preferentially on the most numerous species, which is thus
over-represented in the predators diet. However, it is likely that in many
cases a predator will consume more individuals of other species when one of
its prey becomes relatively less abundant. This behaviour is termed predator
switching. Many examples may be cited where a predator prefers to prey on
species that are most abundant at any time, see Fisher - Pitte [1], Lawton,
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et al. [2] and Murdoch [3]. They also established that switching is a normal
feature of predator behaviour. Mathematical models involving one predator
and two prey species have been generally studied, in which the predator feeds
more intensively on the more abundant species (e.g. Holling [4], Takahashi
[5], May [6,7], Murdoch and Oaten [8], Rougharden and Feldman [9], Tanksky
[10], Prajneshu and Holgate [11], Khan et al. [12,13].
In the natural world, almost all animals have the age structure of imma-

ture and mature. In particular, mammalian populations and some amphibi-
ous animals exhibit these two stages. There are two types of stage dependent
predation in predator-prey models. In the first of these the predators eat
only adults. These are cases where insects are preyed upon only in the adult
stage (e.g. Lloyd and Dybas [14]. On the other hand, there are well doc-
umented cases where predators consume only immature prey. Le Caven et
al. [15] and Nielsen [16] have described such cases.
Several models have been proposed to account for the stage structure

of immature and mature of the species. One can refer to Freedman et al.
[17], Gurney et al. [18] Xinyu Song and Lansun Chen [19], Khan et al. [20]
, Zhang et al. [21] investigated a mathematical model of two species with
stage structure of immature and mature of the prey species. They assumed
that predators interact only with immature population of prey species. In
this paper we consider the case where a second specie is a predator of both
mature and immature prey species. The predator can feed on either stage
of prey but instead of choosing individuals at random predator would catch
a member of the immature or adult prey populations which is proportional
to their abundance, that is the predator feeds preferentially on the most
numerous stage species. This implies a kind of switching from immature
to mature alternately. This is the normal feature of predator behaviour.
Similar to Zhang [21] model we also considered harvesting of mature prey
population, which is more appropriate to the economic and biological views
of renewable resources management. Economic and biological aspects of
renewable resource management have been considered by Clark [23], Leng
[24], Bhattacharya et al. [25] and John [26]. We obtain conditions for local
and global stabilities of the equilibrium sets and a threshold of the harvesting
for sustainable yield.
Tansky [10] investigated a mathematical model of two prey and one preda-

tor system which has the switching property of predation of the following
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form
dx

dt
=

½
γ1 −

az

1 + (y/x)n

¾
x,

dy

dt
=

½
γ2 −

bz

1 + (x/y)n

¾
y,

dz

dt
= −δ + a1xz

1 + (y/x)n
+

a2yz

1 + (x/y)n
, n = 1, 2, 3

where x, y and z denote abundance of two kinds of the prey species and a
predator species, respectively. γ1 and γ2 are the specific growth rates of the
prey species in the absence of predation and δ is the per capita death rate of

the predator. The functions
a

1 + (y/x)n
and

b

1 + (x/y)n
have a characteristic

property of switching mechanism. The predatory rate that an individual of
the prey species is attacked by a predator decreases when the population
of that species becomes rare compared with the population of another prey
species. This property is much amplified for large value of n. This paper is
organized as follows - The model for the species is presented in the section
2. Section 3 is concerned with equilibrium and stability analysis. Section
4 deals with Global Stability. Optimal harvesting is discussed in Section 5.
Final discussion and results are summarized in Section 6.

2 The model

The prey-predator model with simple multiplicative effect where prey species
is stage structure of immature and mature is of the form:

dx1
dt

= αx2 − κx1 − βx1 − η1x
2
1 −

bx21y

x1 + x2
,

dx2
dt

= βx1 − κx2 − bx22y

x1 + x2
− h, (2.1)

dy

dt
=

µ
bx21

x1 + x2
+

bx22
x1 + x2

− d

¶
y,

with xi (0) > 0, i = 1, 2, y (0) > 0.
xi : the population of the immature and mature prey species of stage i
y : population of predator species
α : per capita birth rate of matured prey species
β : maturation rate from immature stage to mature stage
κ : per capita death rate of both stages of prey species
η : proportionality of self interaction of immature population
d : per capita death rate of predator
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where h = qEx2 is the harvesting yield, q is the catchability coefficient
and E is the harvesting effort. We are considering optimal harvesting of
the mature population. In order to reduce the number of parameters, we
consider

bt = τ ,
α

b
= α1,

η

b
= η1,

κ

b
= κ1,

h

b
= H,

β

b
= β1,

d

b
= d1

Then (2.1) turned into

dx1
dτ

= α1x2 − k1x1 − β1x1 − η1x
2
1 −

x21y

x1 + x2
dx2
dτ

= β1x1 − k1x2 − x22y

x1 + x2
−H (2.2)

dy

dτ
=

µ
x21

x1 + x2
+

x22
x1 + x2

− d1

¶
y

3 Steady States and Stability Analysis

We find the steady states of equations (2.2) by equating the derivatives on
the left hand sides to zero and solving the resulting algebraic equations. This
gives two possible steady states

(i) Ē1 = (x̄1, x̄2, 0)
where x̄1 is the positive root of the equation

η1x̄
2
1 + x̄1

µ
κ1 + β1 −

α1β1
κ1

¶
+

αH

κ1
= 0, (3.1)

and

x̄2 =
β1x̄1 −H

κ1
. (3.2)

This will exists if
α1β1
κ1

> (κ1 + β1) and β1x̄1 > H.

(ii) Ē2 = (x̂1, x̂2, ŷ) =
µ
d1 (x̄+ 1) x̄

C (1 + x̄2)
,
d1 (1 + x̄)

C (1 + x̄2)
,
(1 + x̄)

x̄

³α1
x̄
− κ1 − β1 − η1x1

´¶
,

or equivalently

=

µ
d1 (x̄+ 1) x̄

C (1 + x̄2)
,
d1 (1 + x̄)

C (1 + x̄2)
, (1 + x̄) (β1x̄−H1 − qE1)

¶
. (3.3)
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Here x̄ =
x̂1
x̂2
is a real positive root of the equation,

β1Cx̄
5 + x̄4 (−C (κ1 + qE1)) + x̄3 ((κ1 + β1)C + β1C + η1d1)

+x̄2 (−Cκ1 + qE1C + η1d1 − α1C) + x̄ ((κ1 + β1)C)− α1C = 0. (3.4)

For equilibrium values (x̂1, x̂2, ŷ) to be positive, a positive real root of
(3.4) must be bounded as

κ1 + qE1
β1

< x̄ <
α1

κ1 + β1 + η1x̄1
. (3.5)

Stability Analysis
We proceed in the usual manner by considering small disturbances from

the steady state and linearising the resulting equations.
It is easy to show that the equilibrium Ē1 = (x̄1, x̄2) is locally unstable

so proof is omitted.

Stability analysis of equilibrium (ii).
The stability matrix of the equilibrium, Ē2 =

¡b̄x1, b̄x2, ŷ¢ is

L− λ B
−x̂1x̄
1 + x̄

A −Ax̄− λ
−x̂2
1 + x̄

C +Dx̂1 C +Dx̂2 −λ


, (3.6)

where

B = α1 +
x̂21ȳ

(x̂1 + x̂2)
2 ,

L = −B
x̄
− η1x̂1,

A = β1 +
x̂22ȳ

(x̂1 + x̂2)
2 ,

C =
−ȳ (x̂21 + x̂22)

(x̂1 + x̂2)
2 , D =

2ŷ

x̂1 + x̂2
. (3.7)

The characteristic equation associated with the positive equilibrium Ē2
¡b̄x1, b̄x2, ŷ¢
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of this model is

λ3 + λ2 (Ax̄− L)− λ

µ
LAx̄− x̂2

1 + x̄
(C +Dx̂2) +AB − x̂1x̄

1 + x̄
(C +Dx̂1)

¶
+

·
− Lx̂2
(1 + x̄)

(C +Dx̂2) +
Bx̂2
1 + x̄

(C +Dx̂1) +
ACx̂1x̄

1 + x
+

ACx̂1x̄
2

1 + x̄

¸
(3.8)

+
ADx̂1x̄

1 + x̄
(x̂2 + x̂1x̄) = 0

Equation (3.8) can be written in the form

λ3 + a1λ
2 + a2λ+ a3 = 0, (3.9)

where

a1 = Ax̄− L

a2 =
x̂2
1 + x̄

(C +Dx̂2) +
x̂1x̄

1 + x̄
(C +Dx̂1)− LAx̄−AB

a3 =
Bx̂2
1 + x̄

(C +Dx̂1) +
ADx̂1x̄

1 + x̄
(x̂2 + x̂1x̄) +ACx̂1x̄

− Lx̂2
(1 + x̄)

(C +Dx̂2) . (3.10)

The Routh-Hurwitz stability criteria for the third order system is
(a) a1 > 0, a3 > 0
(b) a1a2 > a3.
Hence, the equilibrium (ii) will be locally stable to small perturbations

provided x̄ > 1. The details of the analysis is given in Appendix.

We summarized the results by the following theorem.

Theorem 1 If x̄ > 1 then Ē2 is asymptotically stable.

4 Global Stability of Interior Equilibrium

Theorem 2 Existence of positive interior equilibrium of system equation
(2.1) implies its global asymptotic stability around the positive interior equi-
librium provided the ratio of the young and adult prey species at any time has
nearly same value as at the equilibrium.
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We make use of the general Lyapunov function

v (x1, x2, y) =
2X

i=1

·
(xi − x̂i)− x̄i ln

µ
xi
x̂i

¶¸
+ (y − ŷ)− ȳ ln

µ
y

ŷ

¶
. (4.1)

Now calculating time derivative of equation (4.1) along the solutions of
equation (2.1), we have

dv

dt
= (x1 − x̂1)

·
α1

x2
x1
− β1 − κ1 − η1x1 −

x1y

x1 + x2

¸
+(x2 − x̂2)

·
β1

x1
x2
− κ1 − x2y

x1 + x2
− q1E

¸
+(y − ŷ)

·
x21

x1 + x2
+

x22
x1 + x2

− x̂21
x̂1 + x̂2

− x̂22
x̂1 + x̂2

¸
.

At equilibrium

κ1 + β1 =
α1x̂2
x1
− η1x̂1 −

x̂1ŷ

x̂1 + x̂2

q1Ex̂2 = β1x̂1 − κ1x̂2 − x̂22ŷ

x̂1 + x̂2
.

So

dv

dt
= −η1 (x1 − x̂1)

2 +
(x̂1x2 − x1x̂2)

(x1 + x2) (x̂1 + x̂2)
[ŷ (x1 − x2)− y (x̂1 − x̂2)]

+α (x1 − x̂1)

µ
(x̂1x2 − x1x̂2)

x1x̂1

¶
− β1 (x2 − x̂2)

µ
(x̂1x2 − x1x̂2)

x1x2

¶
.

If
x̂1
x̂2
=

x1
x2
(i.e. the ratio of young and adult prey species is nearly same

as at equilibrium value) then

dv

dt
= −η (x1 − x̂1)

2 < 0

Hence, Ē2 (x̂1, x̂2, ŷ) is globally asymptotically stable for
x̂1
x̂2
' x1

x2
for all

t ≥ 0.

5 Optimal Harvesting

From the economic and biological point of view of renewable resources man-
agement it is more appropriate the exploitation of mature population. It
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is desirable to have a unique positive equilibrium which is globally asymp-
totically stable. If the ratio of mature and immature population is nearly
the same as their respective population at equilibrium point then the unique
positive equilibrium of system (2.2) is globally asymptotically stable. In
this section, we are considering the harvesting with a mature population and
studying the maximum sustainable yield of the system (2.2)
System (2.2) has a positive equilibrium Ê2 if and only if

E1 <
β1x̄− κ1

q
. (5.1)

Hence, the maximum value of the harvesting effort is given by equation
(5.2)

E1 = E∗1 =
β1x̄− κ1

q
, (5.2)

i.e.
E1 ∈ [0, E∗1 ] .

Let x2 = b̄x2, the harvesting of the system (2.2) is

H (E1) = qE1x̂2 =
d1q

C

·
E1 (1 + x̄)

(x̄2 + 1)

¸
. (5.3)

Finding the derivative of H (E1), we get

dH

dE1
=

d1q

C


½
(1 + x̄) +

dx̄

dE1
E1

¾
(x̄2 + 1)− 2x̄ (x̄+ 1)E1 dx̄

dE1
(x̄2 + 1)


dH

dE1
> 0 if E1 <

(1 + x̄) (x̄2 + 1)
dx̄

dE1
(x̄2 + 2x̄− 1)

. (5.4)

(i) If E1 ∈ [0, E∗1 ] and inequality given in (5.4) is satisfied then the
maximum sustainable yield is

MaxH (E1) = qE∗1 x̂2 =
d1 (β1x̄− κ) (1 + x̄)

C (x̄2 + 1)
(5.5)

(ii) The solution of
dH

dE1
= 0 is E1 = E1 =

(1 + x̄) (x̄2 + 1)
dx̄

dE1
(x̄2 + 2x̄− 1)

.
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The maximum yield depends on the value of Ē1 and E∗. The corre-
sponding results are given as follows:
(a) Ē1 > E∗1 , then the maximum yield is given by equation (5.5)
(b) Ē1 ∈ [0, E∗1 ] and inequality (5.4) is not satisfies then the correspond-

ing maximum yield is

MaxH = H
¡
Ē1
¢
=

qd1 (1 + x̄)2

C
dx̄

dE1
(x̄2 + 2x̄− 1)

Theorem 3 (i) If E1 <
(1 + x̄) (x̄2 + 1)
dx̄

dE1
(x̄2 + 2x̄− 1)

, and either E1 ∈ [0, E∗1 ] or

E1 > E∗1 , then, the maximum sustainable yield in system (2.2) is

MaxH =
d1 (β1x̄− κ) (1 + x̄)

C (x̄2 + 1)
.

(ii) If E1 ≥ (1 + x̄) (x̄2 + 1)
dx̄

dE1
(x̄2 + 2x̄− 1)

,

and Ē1 ∈ [0, E∗1 ] , then the maximum sustainable yield in system (2.2) is

MaxH =
qd1 (1 + x̄)2

C
dx̄

dE1
(x̄2 + 2x̄− 1)

.

6 Discussion

The mathematical model which we have proposed consists of three non-linear
ordinary differential equations, namely, an immature population, mature
population and their predator. The predator can feed on either stage of
prey but instead of choosing individuals at random would catch a member
of the immature or mature prey population which is proportional to their
abundance. The predator feeds preferentially on the most numerous stage
species. This behaviour is termed predator switching. We have given con-
ditions for the stability of the equilibria. The dynamical behaviour of the
system shows that the system around positive interior equilibrium is locally
stable in some region of parametric space and unstable in some other re-
gion of parametric space. It has been also observed that the system around
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the positive equilibrium is globally asymptotically stable if the ratio of the
young and adult prey species at any time has nearly the same value as at the
equilibrium point. We studied the maximum sustainable yield of the sys-
tem. For economic and biological views of renewable resources management
we studied exploitation of mature population. From the point of view of
ecological management, it is desirable to have a unique positive equilibrium
which is globally asymptotically stable, in order to plan harvesting strategies
and keep sustainable development of ecosystem. We obtain conditions for
threshold of harvesting for the mature population. The optimal harvesting
for the mature population is also considered.
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Appendix

To show that the non-zero equilibrium is locally stable to small pertur-
bations, we need to show the Routh-Hurwitz conditions are satisfied

(a) a1 > 0, a3 > 0; (b) a1a2 > a3.

Clearly

a1 = Ax̄− L = β1x̄+
x̂22ŷ

(x̂1 + x̂2)
2 +

α1
x̄
+

x̂21ŷ

x̄ (x̂1 + x̂2)
2 + η1x̂1 > 0. (A.1)

To show a3 > 0.
Write

P =
Cx̂2
x̄
+

Dx̂22
x̄
+ Cb̄x2 +Dx̂1x̂2,

Q = Cx̂1x̄+Dx̂1x̂2x̄+ Cx̂1x̄
2 +Db̄x1x̄2, (A.2)

S = Cx̂1x̂2 +Dx̂1x̂2x̄+ Cx̂1x̄
2 +Dx̂21x̄

2,

so that
a3 =

1

(1 + x)
[BP +AQ+ ηs] , (A.3)
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where

P =
−ŷ (x̂21 + x̂22) x̂

2
2¡b̄x1 + b̄x2¢2 b̄x1 +

2ŷx̂32¡b̄x1 + b̄x2¢ b̄x1 − ŷ (x̂21 + x̂22) x̂2¡b̄x1 + b̄x2¢2
+
2ŷx̂1x̂2
x̂1 + x̂2

=
ŷ (x̂21 + x̂22) x̂2
x̂1 (x̂1 + x̂2)

> 0, (A.4)

Q = Cx̂1x̄+Dx̂1x̂2x̄+ Cx̂1x̄
2 +Dx̂21x̄

2

=
−ŷ (x̂21 + x̂22) b̄x1x̄
(x̂1 + x̂2)

2 +
2ŷx̂1x̂2x̄

(x̂1 + x̂2)
− ŷ (x̂21 + x̂22) x̂1x̄

2

(x̂1 + x̂2)
2

+
2ŷx̂21x̄

2

(x̂1 + x̂2)
=

ŷ (x̂21 + x̂22) x̂
2
1

x̂22 (x̂1 + x̂2)
> 0, (A.5)

S = Cx̂1x̂2 +Dx̂1x̂
2
2,

=
ŷx̂1x̂2 (x̂

2
2 + 2x̂1x̂2 − x̂21)

(x̂1 + x̂2)
2 , (A.6)

Now, from (A.3), (A.4), (A.5) and (A.6),

a3 =
ŷb̄x2¡b̄x1 + b̄x2¢2



α1b̄x2 (x̂21 + x̂22)

x̂1
+

x̂1x̂2ŷ (x̂
2
1 + x̂22)

(x̂1 + x̂2)
2

+
β1x̂

2
1 (x̂

2
1 + x̂22)

x̂22
+

x̂21ŷ (x̂
2
1 + x̂22)

(x̂1 + x̂2)
2

+
η1x̂1b̄x2
(x̂1 + x̂2)

(x̂22 + 2x̂1x̂2 − x̂21)


. (A.7)

Recall that

ŷ =

·
1 + x̄

x̄

³α1
x̄
− κ1 − β1 − η1x̄1

´¸
> 0,

So
α1x̂2 − η1x̂

2
1 > 0. (A.8)

Thus, a3 > 0.
This completes the prrof of (a).

(b) We must show that a1a2 > a3.
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From (3.10),

a1a2 > a3 ⇒ (Ax̄− L)

·
−LAx̄+ x̂2

(1 + x̄)
(C +Dx̂2)−AB +

x̂1x̄C

1 + x̄
+

Dx̄x̂21
1 + x̄

¸
> −Lx̂2C

1 + x̄
− LDx22
1 + x̄

+
Bx̂2
1 + x

(C +Dx̂1) +
ACx̂1x̄

1 + x̄
+

ADx̂1x̂2x̄

1 + x̄
(A.9)

+
ACx̂1x̄

2

1 + x̄
+

ADx̂21x̂
2

1 + x̄
.

After some simplifications (A.9) can be expressed as

−ACx̄ (x̂1 − x̂2)

1 + x̄
+

BC (x̂1 − x̂2)

1 + x̄
− ADx̂2x̄

1 + x̄
(x̂1 − x̂2)

+
BDx̂1
1 + x̄

(x̂1 − x̂2)+η1

·
A21x̂x̄

2 + η1x̂
2
1Ax̄+

Cx̂21x̄

1 + x̄
+

Dx̄1x̄
3
1

1 + x̄
+ABx̂1

¸
> 0.

(A.10)

All terms inside square bracket of inequality (A.10) are positive except
Cx̂21x̄

1 + x̄
Where

Cx̂21x̄

1 + x̄
+

Dx̄x̂31
1 + x̄

=
x̂21x̄

1 + x̄
(C +Dx̂1) =

x̂21x̄ȳ

(1 + x̄) (x̂1 + x̂2)
2 ,

[(x̂1 − x̂2) (x̂1 + x̂2) + 2x̂1x̂2] > 0 (A.11)

if x̂1 > x̂2

Now

ACx̄ (x̂1 − x̂2)

1 + x̄
+

BC (x̂1 − x̂2)

1 + x̄
− ADx̂2x̄ (x̂1 − x̂2)

1 + x̄
+

BDx̂1 (x̂1 − x̂2)

1 + x̄

=
(x̂1x̂2)

(x̂1 + x̂2)
[C (α1x̂2 − β1x̂1) +Dx̂1x̂2 (α1 − β1)]

(A.12)

+
x̂1 − x̂2 (x̂1 − x̂2)

(x̂1 + x̂2)
3 [C +D (x̂1 + x̂2)] .

Let

U = C (α1x̂2 − β1x̂1) +Dx̂1x̂2 (α1 − β1) ,

V = C +D (x̂1 + x̂2) , (A.13)
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V > 0 sin C +Dx̂1 > 0 from (A.11)

To show that U > 0 where

α1x̂2 − β1x̂1 < α1x̂2 − β1x̂2 since we are assuming x̂1 > x̂2 and Dx̂1 > C
from (A.11)

So
U > 0.

Hence, a1a2 > a3 if x̄ > 1. This completes the proof.
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