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Abstract: A new classification method, networked multi-class Support Vector Machines (SVM), is proposed for prediction of protein secondary structure. Classification is based on the analysis of physicochemical properties of a protein generated from its sequence. Multi-class SVM is more powerful than the standard bi-class one since the empirical recognition rate of multi-class SVMs is higher and multi-class SVMs use far fewer support vectors. This is the reason why we investigate the implementation of Multi-class Support Vector Machines to perform the task. A prediction tool based multi-class SVM network is developed. With a trained multi-class SVM network and this tool can perform secondary structure prediction for protein sequences, and eventually protein sequence databases.
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1 Introduction 

With the advent of large-scale genome sequencing programs and the completion of the human genome project the importance of protein structure determination has become a main challenge of structural molecular biology. Theoretical methods for protein structure prediction are important since they offer the possibility of supporting experimental methods as well as of validating the scientific theory behind the principles of protein structure. Fully automated protein structure prediction is a significant challenge and has been a final goal of research in the field since it allows the possibility of decoupling the quality of the prediction from the expertise of the person using the method. 
Currently, most prediction servers are based on a homology principle that states that similar sequences will most likely have a similar structure [1]. Thus, the performance of these servers automatically increases due to the continuous growth of the number of resolved structures. On the other hand, there are algorithmic developments that lead to more sensitive methods. Building new prediction methods by fusion of existing ones appears particularly relevant for protein secondary structure prediction. Two main reasons can be put forward to support this assertion. First, the numerous methods already available to predict the secondary structure are based on different principles. Second, they use, in addition to the amino acid sequences or profiles of multiple alignments, data from different knowledge sources. Consequently, whenever protein secondary structure is to be predicted, several sets of conformational scores are available, which can be expected not to be utterly correlated. Indeed, most of the current best prediction systems implement conformational score combinations, which can take many forms. 
Recently a relatively new classification method, support vector machines (SVM), has been used for the prediction of protein–protein interaction, protein fold recognition, and protein structure prediction. Instead of directly analyzing sequences, SVM classification method used in these studies is based on the analysis of physicochemical properties of a protein generated from its sequence [2]. Such an approach may be extended to the classification of proteins into functional classes, and thus facilitating the prediction of function of these proteins. Proteins of specific functional class share common structural features essential for performing similar functions such as transport, metabolism, and binding induced signal transduction. The same structural features responsible for protein folding are thus expected to be part of the elements for determination of protein functions. Therefore, as a method successfully used in protein fold recognition, SVM may be potentially used for protein function classification. The study of the standard bi-class SVM is usually performed in two steps: first, the linear case, corresponding to the specification of the maximal margin hyper plane, then the non-linear one, by introduction of kernels satisfying Mercer’s conditions. In the same way as a linear SVM shares the architecture of the perceptron, a linear Multi-class SVM is a multivariate linear regression model, i.e. a set of hyper planes of cardinality equal to the number of classes. 
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Figure 1. Bi-class vs. Multi-class SVMs
In this paper, we establish an automatic protein secondary structure prediction tool from combining protein secondary structure models with Multi-class SVM. In the above Figure 1, the basic architectures for the bi-class and multi-class SVM predictions are shown. In the implementation section, we briefly explain how it can be of practical use to study the generalization capabilities of multi-class networking models. The corresponding theorems and formulae are then applied to the multivariate affine regression model, which leads to the specification of the new Multi-class SVM. Initial experimental results are given too. 

2 Support Vector Machines: Bi-Class & Multi-Class
The support vector machine (SVM) is a training algorithm for learning classification and regression rules from data, for example the SVM can be used to learn polynomial, radial basis function (RBF) and multi-layer perceptron (MLP) classifiers.  SVMs arose from statistical learning theory; the aim being to solve only the problem of interest without solving a more difficult problem as an intermediate step.  SVMs are based on the structural risk minimization principle, closely related to regularization theory.  This principle incorporates capacity control to prevent over-fitting and thus is a partial solution to the bias-variance trade-off dilemma [3]. 
Two key elements in the implementation of SVM are the techniques of mathematical programming and kernel functions. The parameters are found by solving a quadratic programming problem with linear equality and inequality constraints; rather than by solving a non-convex, unconstrained optimization problem.  The flexibility of kernel functions allows the SVM to search a wide variety of hypothesis spaces. Here we focus on SVMs for two-class classification, the classes being 
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 respectively.  This can easily be extended to 
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class classification by constructing 
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 two-class classifiers.  The geometrical interpretation of support vector classification (SVC) is that the algorithm searches for the optimal separating surface, i.e. the hyperplane that is, in a sense, equidistant from the two classes.  This optimal separating hyperplane has many nice statistical properties.  SVC is outlined first for the linearly separable case.  Kernel functions are then introduced in order to construct non-linear decision surfaces.  Finally, for noisy data, when complete separation of the two classes may not be desirable, slack variables are introduced to allow for training errors.  

The above descriptions also apply to any multi-class discriminant system obtained by combining a multivariate model with Bayes’ estimated decision rule. Here we turn to the specific case of Multi-class SVMs. The study of the standard bi-class SVMs is usually done in two steps: first, the linear case by optimal hyperplane, then the non-linear one by introduction of kernels satisfying Mercer’s conditions. Indeed, the specification of the training procedure does not take into account explicitly the nature of the kernel, although bounds on the generalization error of kernel machines have been derived. In the same way as a linear SVM shares the architecture of the perceptron, a multi-class linear SVM is a multivariate linear regression model--a set of hyperplanes of cardinality equal to the number of classes [4]. We thus have to apply the inductive principle to Multi-class SVMs, and consequently to determine the objective function of the training procedure, we must thus set the covering numbers of the multivariate linear or affine model. 

As for the choice between an architecture based on binary SVMs and a multi-class SVM, two strong arguments speak in favor of the latter. First, the empirical recognition rate of multi-class SVMs is higher. Second, multi-class SVMs use far fewer support vectors [4]. The lower the number of support vectors, the lower the number of terms in the sum, and, by way of consequence, the lower the time required to compute the outputs.  As we defined the protein secondary structure prediction problem to be the three-category classification, the output size of the networked multi-class SVMs is set to 3 for the three types of secondary structures – Alpha Helices (H), Beta Strands (E) and Coils (C) . As we must fix the input size too, we try to supply fix-sized window of protein sequences, normally 13. 
3 Implementation of the Multi-class SVM based Network
A multi-class linear SVM is a multivariate linear regression model or a set of hyperplanes of cardinality equal to the number of classes Q. We thus have H = {h}, with
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The choice of an optimization method is an issue in its own right, since dealing with Q classes multiplies the number of dual variables by (Q−1). The algorithm includes a decomposition method. The prediction is local and based on the sliding window of the primary structure or the amino acid sequence. Precisely, the goal of training consists in associating each window’s content with the conformational state of the central residue. This approach is standard in statistical approaches. 
For a multi-class SVM, the objective function of which takes the confidence interval into account. The training procedure associated with this model consists in solving the following quadratic programming problem:
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As usual, the non-negative slack variables 
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 have been introduced to take into account the fact that the data could be non-separable by the multivariate linear model. Their values characterize the empirical risk. In fact, additional specifications are required to ensure the unity of the optimal solution. 
Training is initiated before we try to use the tool to predict structure practically. As we must specify the number of categories of the multi-class SVM and there are mainly three protein secondary structures, namely alpha helices, beta strands and coils, we choose the number of categories to be 3. The size of sliding window is also very important and normally we number it as 13 as usual. With other specified multi-class SVM’s parameters set, the network is ready to be trained. 
The training data need to be prepared well before the training in a certain desired format. Since the data is prepared for training purpose, we need the exact conformational detail of the training data set. We prepared the training data set by calculating the secondary structure using DSSP for those proteins with known structure in PDB; the raw data file contains data with the following format:
	354 20 3

….

1BXOA._@res0.95:323
AACHVACNCPCANDEEYHCPVCHHHCCLNLNFDCHCADLWVFCCE…..

CECEEEEEEECHHHCCEEEEEEECCEEEEEEEECCCCCEEECECC……

….


In the training data fie, the first line contains three integers, which are the number of sliding windows, the number of inputs (no. of types of Amino Acid) and the number of output states accordingly. Then for each protein sequence, there are three lines of information: the first line is the protein sequence name tag, the second is the primary structure or Amino Acid sequence, and the third is the calculated real secondary structure conformational information.
The raw data file need to be pre-processed and converted into our multi-class SVM desired format, which is the following:
	23645

13

……

4  7  4  7  3  7  4 13  2  3  9 18  4 3

7  4  7  3  7  4 13  2  3  9 18  4 15 2
4  7  3  7  4 13  2  3  9 18  4 15  7 3

……


The input file to the multi-class SVM network is actually the set of all possible sliding windows available in the training data set. E.g. a N residue protein sequence will have (N-12) sliding windows in total. The first line is the number of total sliding windows in the training data set, the second is the size of sliding window normally 13, and the rest are contents of sliding windows that end with the conformational state of the central residue for each sliding window data line. 
The prediction tool is designed to explore the secondary structure of protein sequences with ease of usage and good accuracy. The experimental results will be discussed in the later section.
4 Experimental Results
The training of the multi-class SVM network has been achieved before the prediction tool’s full functioning. All the gradients and optimal parameters for the network has been logged and for further usage. Now the network is ready to accept protein sequences and predict their corresponding secondary structure with certain accuracy. 
The author has submitted a protein sequence namely P53 [5], which is a Phosphoprotein that acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. P53 has 393 amino acids and the sequence is shown below:
>gi|129369|sp|P04637|P53_HUMAN Cellular tumor antigen p53 (Tumor suppressor p53) 

MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAA

PPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKT

CPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGR

DRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALEL

KDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD
When the P53 sequence has been submitted to the server, the prediction result is shown below graphically in Figure 2, where H, E and C stand for Alpha helix, Beta Strand and Coil respectively:
[image: image9.png]i mwlmmlmulmul |\u\\|\\u\|\\\uI\\\\\Iu\\\\Iu\\\|\u\\I\Hmmulumm "‘\\IHHHINH‘MH|H‘H(""\I\\\\\Iu\\\|\u"’\\\""\\u\|"‘HI\\H\IH\NMHI\HHIHH‘”uuluml““‘lmumm)\\\uI\\\\\Iu\\\\Iu\\\Ium‘mulummm \\\uI\\\mlumluuuumlu
Strand
e S0 100 150 200 ) 300 350




Figure 2. Predicted S-Structures of P53

This proposed protein secondary structure prediction tool is also designed for bulk protein sequences or databases, a later version with parallelized and distributed technique will be soon available for high speed purpose
5 Conclusion and Future work
In this paper, the authors proposed a new multi-class SVM network based protein secondary structure prediction tool. With well training multi-class SVMs, this tool can predict the secondary structures of proteins sequences or databases. This tool will help bioinformatics researchers explore the protein information in a convenient way.

The web service of this prediction tool will be soon available for internet users in order that this tool can be comparable to other famous prediction servers. In the other hand since the protein sequences should be converted into sliding window format, the data size for bulk sequences or databases will be extremely high, so that the prediction timing will be tedious in this case. This will lead to the needs for high performance computing. In the authors’ previous paper in high performance computing in protein secondary structure prediction, they proposed a parallelized version of a famous DSC method [6], so that the next development in this project is to develop its high performance version.
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