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Abstract: Comparison of similarity between sequences can provide information for inferring the function
of a newly discovered sequence, and understanding the evolutionary relationships among genes, proteins,
and entire species. This paper presents a technique for computing the similarity between unaligned DNA
sequences. The computation is based on the Kullback-Leibler divergence of hidden Markov models. We
used the data sets taken from the threonine operons of Escherichia coli K-12 and Shigella flexneri to test
the proposed method. The result obtained agrees with an alignment-based method. We further tested
the proposed method with a data set of 34 complete mammalian mtDNA genomes. The phylogenetic tree
derived from the second experiment shows reasonable evolutionary relationships between these species.
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1 Introduction

Sequence comparison methods become a cornerstone
of bioinformatics and computational biology. Com-
paring two or more sequences is mostly done today by
first aligning each pair combination of sequences, cal-
culating the quality of the alignment and optimizing
the alignment using special scoring functions.

For pair-wise sequence alignment, several different al-
gorithms have been developed, each having a specific
goal such as global or local alignment (Gotoh, 1982;
Needleman and Wunsch, 1970; Smith and Waterman,
1981). In addition a few heuristic approaches have
been developed, mostly based on the recognition of
alignment seeds, with BLAST (Altschul et al., 1990;
Altschul et al., 1997) and FASTA (Pearson, 1990;
Pearson and Lipman, 1988) being the most promi-
nent applications. Although these approaches pro-
vide satisfactory outcomes in most cases, the com-
putational load escalates as a power function of the
length of the sequence.

For evolutionary relationship analysis, multiple se-
quence alignments are used to determine the relation-
ships between several sequences. Multiple sequence
alignments are thereby generated using first pair-wise
alignments to calculate the distances between each
sequence (global alignment) and building a phylo-
genetic tree using scoring systems to calculate the

distance between each sequence pair. This tree is
then used to generate an optimal multiple sequence
alignment (Higgins et al., 1996). In addition, se-
quence weighting is also used to improve the method
(Thompson et al., 1994). Another popular method is
based on hidden Markov models to improve the mul-
tiple alignment (Churchill, 1989; Baldi et al., 1994;
Eddy, 1995; Eddy, 1998; Durbin, 1998).

Even though alignment-based methods have been
widely used for sequence comparison, they cannot be
applied for all types of sequences such as the prob-
lem of whole genome phylogeny, which have been
discussed by Li et al. (2001), and Otu and Sayood
(2003). To overcome this problem, an early work on
a measure of similarity of unaligned sequences was
proposed by Blaisdell (1986). Recent developments
on non-alignment methods include the work by Li et
al. (2001), who applied the notion of Kolmogorov
complexity to introduce a distance measure between
two unaligned sequences and evaluated the method
by comparing a set of whole mitochondrial genomes.
Almeida et al. (2001) introduced the chaos game
representation for the analysis of genomic sequences.
Vinga et al. (2004) compared alignment-free metrics
for sequence comparison in the context of word fre-
quencies Wu et al. (2001). Otu and Sayood (2003)
introduced a distance measure based on the Lempel-
Ziv complexity for phylogenetic tree construction can



be defined. Pham and Zuegg (2004) applied the no-
tion of Kullback-Leibler divergence (KLD) of Markov
models for computing the distance between two un-
aligned DNA sequences.

The probabilistic measure that Pham and Zuegg
(2004) introduced so far considers each Markov state
according to an observable event of the four nu-
cleotide symbols {a, c, g, t}. Since these events are
observable, the output in any given state is therefore
not random. Our present work extends the concept
of Markov models to add another source of stochas-
tic process in which the observation becomes a prob-
abilistic function of the state. This resulting model
is a doubly stochastic process and called a hidden
Markov model (HMM) because its states are hidden
and can only be observed through other stochastic
processes that produce the sequence of observations.
In the subsequent sections, we will present a hidden
Markov modeling of unaligned DNA sequences, the
notion of the Kullback-Leibler divergence for compar-
ing two HMMs. We then illustrate the performance
of the proposed HMM with two experiments. The
first test includes six DNA sequences, taken from of
the threonine operons of Escherichia coli K-12 and
Shigella flexneri; and the second test a data set of
thirty-four complete mitochondrial DNA genomes

2 Hidden Markov Models for
Unaligned DNA Sequences

Let S be a sequence of nucleotides, and {a,c,g,t} ∈
S be the set of four different bases used in DNA
molecules: adenine (a), cytosine (c), guanine (g),
and thymine (t). To cast the information content
of S into the context of a hidden Markov model, we
consider the four bases as the four distinct symbols
which are observable events, and define the hidden
states of which the observation is a probabilistic func-
tion as follows. Before we proceed to our definition,
we should mention that there can be several possible
ways of defining the states of a hidden Markov model
for an unaligned DNA sequence. In this study, we
define five hidden states: a-rich, c-rich, g-rich, t-rich,
or non-dominant; because each of these five states
can emit a certain nucleotide symbol. Being either a-
rich, c-rich, g-rich, t-rich, or non-dominant physically
means that a state can be a segment of length L > 1,
with the designation of which base is base-rich being
determined by a unique maximum number of occur-
rences; otherwise the state is non-dominant. One of
the most convenient way for selecting the length of
the segment is to choose L to be odd in order to
introduce the same number of neighbors to a sym-

bol, which we will explain later. We select L=5 in
this study. For examples, (a,c,a,t,g) is the a-rich
state because the number of occurrences of base a
is maximum (two occurrences); whereas (a,c,a,t,t) is
the non-dominant state because there does not ex-
ist a base having a unique maximum number of oc-
currences (both a and t, each having the same two
ocurrences). It should be noted that the number of
occurrences of the bases is independent of the order-
ing of the bases in the state segment. A symbol
is considered to be the middle element of the state
segment, which has two neighbors on the left and
two on the right. For example, symbol a is revealed
from the a-rich state (a,c,a,t,g) that has (a,c) and
(t,g) as neighbors on the left and right respectively;
whereas another symbol a is also revealed from the
non-dominant state (a,c,a,t,t) having (a,c) and (t,t)
as neighbors on the left and right respectively. In
this sense, the observation of the bases (symbols) can
be modeled as a probabilistic function of the states.
This modeling of symbols and states gives a double
stochastic process with an underlying hidden stochas-
tic process that can only be revealed through another
stochastic process producing the sequence of observ-
able symbols. Having defined the symbols and states
for the hidden Markov modeling of an unaligned DNA
sequence, we now briefly describe the general concept
of a hidden Markov model that will be used as the
basic computation of a distance measure between two
unaligned sequences.

Let N be the number of states, M the number of
observation symbols, V = {v1, v2, . . . , vM} the set of
distinct M individual symbols, O = (o1, o2, . . . , oT )
an observation sequence, where T is the number of
observations. We denote A = {aij} to be the state-
transition probability distribution, B = {bj(k)} the
observation symbol distribution, and π = {πi} the
initial state distribution. These three probabilistic
measures are mathematically defined as follows.

aij = P (qt+1 = j|qt = i), 1 ≤ i, j,≤ N

where qt denotes the state at time t, and aij is the
probability of state i going to state j.

bj(k) = P (ot = vk|qt = j), 1 ≤ j ≤ N ; 1 ≤ k ≤ M

which is the probability of symbol vk being in state
j. And the initial state probability is defined as

πi = P (q1 = i), 1 ≤ i ≤ N.

The parameters A, B, and π constitute a hidden
Markov model and can be expressed in a compact
notation as λ = (A, B, π). Now we need to compute



the probability of the observation sequence O given
the model λ, that is to compute P (O|λ). The compu-
tation of P (O|λ) can be determined using straightfor-
ward enumeration, however the corresponding com-
putational complexity involves the order of 2T NT

calculations, which are not feasible even for some
small values of T and N . Either the forward part
or the backward part of the forward-backward proce-
dure (Baum and Egon, 1967; Baum and Sell, 1968)
can be applied for computing P (O|λ) efficiently,
which only requires the order of N2T . The forward
recursive procedure involves the following steps.

1. Definition of forward variable αt(i):

αt(i) = P (o1, o2, . . . , ot, qt = i|λ) (1)

2. Initial condition:

α1(i) = πibi(o1), (2)
1 ≤ i ≤ N

3. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(ot+1), (3)

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

4. Termination:

P (O|λ) =
N∑

i=1

αT (i) (4)

Having presented the mathematical expressions of an
HMM and the computation of the probability of an
observation given an HMM model, we now describe
how to construct the parameters A, B, and π for a
DNA sequence as follows. Given that each state is
a 5-base composition segment, we can estimate the
state-transition distribution by shifting the DNA se-
quence by one base and up to four consecutive shifts.
For example, given a sequence (atgcgagtgttgact), we
first have the state transitions: g-rich (atgcg) → non-
dominant (agtgt) → t-rich (tgact). Applying the first
shift, we have: g-rich (tgcga) → t-rich (gtgtt); the
second shift gives: g-rich (gcgag) → t-rich (tgttg);
the third shift gives: g-rich (cgagt) → non-dominant
(gttga); and the fourth shift giving: g-rich (gagtg) →
t-rich (ttgac). We estimate the observation probabil-
ity distribution by considering a symbol as the mid-
dle element of a state segment. For example, using
the same sequence given above, the g-rich state and
non-dominant state of the unshifted sequence reveal
symbols g and t, respectively. The g-rich and t-rich
states of the second shift reveal symbols c and g, re-
spectively. The g-rich and non-dominant states of

the third shift reveal symbols a and t, respectively.
Both g-rich and t-rich states of the fourth shifting
emit symbol g. We assume that all initial states in π
have the same probabilities. By way of this modeling,
the HMMs are ergodic to obey the assumption of the
approximate Kullback-Leibler divergence, which will
be discussed in the following section.

Having defined an HMM for an unaligned DNA se-
quence, the model paramater λ = (A, B, π) can be
reestimated to maximize P (O|λ) using an iterative
procedure such as the Baum-Welch method which is
also known as the expectation-maximization (EM)
method (Dempster et al., 1977) or using gradient
techniques (Levinson et al., 1983), whereas the first
method is often preferred. The EM method makes
use of the forward-backward algorithm to improve
λ by choosing the maximum likelihood (ML) model
parameters. It has been pointed out by Rabiner and
Juang (1993) that the forward-backward algorithm
leads to local maxima only, and the likelihood func-
tion is very complex and leads to many local maxima
in most practical problems. For the present problem,
we have only one sequence to construct its HMM.
Thus, the reestimation of λ is obviously not applica-
ble here.

3 Similarity Measure of Hidden
Markov Models

Let λ1 = (A1, B1, π1), and λ2 = (A2, B2, π2) be two
hidden Markov models. We now wish to find a simi-
larity or dissimilarity measure between two HMMs λ1

and λ2. A well-known dissimilarity measure between
two probability distributions is the Kullback-Leibler
divergence (Cover and Thomas, 1991).

Let P1 and P2 be two probability distributions on a
universe X , the Kullback-Leibler divergence (KLD)
or the relative entropy, denoted as H(P1, P2), of P1

with respect to P2 is defined by the Lebesgue integral

H(P1, P2) =
∫

X

dP1

dP2
log

dP1

dP2
dP2 (5)

Expression (5) is equivalent to

H(P1, P2) =
∫

X

log
dP1

dP2
dP1. (6)

The discrete version of the KLD defined in (5) is

H(p1, p2) =
∑
x∈X

p1(x) log
p1(x)
p2(x)

(7)
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Figure 1: Phylogenetic tree of 6 DNA sequences taken
from threonine operons of E.coli K-12 and S.flexneri
using CLUSTALW and KLD of HMMs
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Figure 2: Phylogenetic tree of 34 mammalian mtDNA
genomes using KLD of HMMs

While H(p1, p2) is often called a distance; it is not
a metric because H(p1, p2) �= H(p2, p1). Moreover,
H(p1, p2) = 0 iff p1 = p2. A KLD-based distance
between two sequences, denoted by d(λ1, λ2), can be
defined as

d(λ1, λ2) = 1 − exp[Ds(λ1, λ2)] (8)

where Ds is the symmetrized version of the approx-
imate KLD divergence of λ1 and λ2, which is ex-
pressed as

Ds(λ1, λ2) =
D(λ1, λ2) + D(λ2, λ1)

2
(9)

in which D(λ1, λ2) is the empirical KLD between
two HMMs λ1 and λ2, which was originally intro-
duced by Juang and Rabiner (1985) using the Monte
Carlo simulations. The HMMs are assumed to be er-
godic, having arbitrary observation probability distri-
butions; and the dissimilarity is defined as the mean
divergence of the observation sample. This approxi-
mate KLD is defined as

D(λ1, λ2) =
1
T2

log
P (Oλ2 |λ1)
P (Oλ2 |λ2)

(10)

where Oλ2 = (o1o2 . . . oT2) is a sequence of observa-
tions generated by model λ2.

It can be interpreted that expression (10) implies how
well model λ1 scores the observation sequence that
is used to construct model λ2, relative to how well
model λ2 scores the observations used to construct
itself. Because D(λ1, λ2) and D(λ2, λ1) are not sym-
metrical, we can define D(λ2, λ1) as

D(λ2, λ1) =
1
T1

log
P (Oλ1 |λ2)
P (Oλ1 |λ1)

(11)

where Oλ1 = (o1o2 . . . oT1) is a sequence of observed
symbols generated by model λ1.

4 Experimental Results

4.1 Experiment #1

The algorithm was first tested with six DNA se-
quences, taken from of the threonine operons of
Escherichia coli K-12 (gi:1786181) and Shigella
flexneri (gi:30039813). The three sequences taken
from each threonine operon are thrA (aspartoki-
nase I-homoserine dehydrogenase I), thrB (homoser-
ine kinase) and thrC (threonine synthase), us-
ing the ORFs 337-2799 (ec-thrA), 2801-3733 (ec-
thrB) and 3734-5020 (ec-thrC) in the case of
E.coli K-12, and 336-2798 (sf-thrA), 2800-3732
(sf-thrB) and 3733-5019 (sf-thrC) in the case of



S.flexneri. All sequences were obtained from Gen-
Bank (www.ncbi.nlm.nih.gov/Entrez/). To compare
our approach with another method, we calculate
the sequence similarities or sequence distances using
the popular alignment-based method CLUSTALW
(Thompson et al., 1994). The results obtained by
HMMs agree with those obtained by CLUSTALW, in
which thrB groups with thrC giving the relationships
((thrB, thrC),thrA). Figure 1 shows the phylogenetic
tree plotted by the KITSCH program in the PHYLIP
package (Felsenstein, 1993) using the results obtained
by CLUSTALW, and our proposed method.

4.2 Experiment #2

The proposed method was further tested against a
much larger dataset of 34 complete mitochondrial
DNA genomes. The evolutionary relationship be-
tween species as based on sequence analysis of mi-
tochondrial genomws was studied by Reyes et al.
(2000), then Li et al. (2001), and Otu and Say-
ood (2003). However, these analyses have led to di-
verse outcomes and the relative designations remain
controversial. The mtDNA sequences were obtained
from the database of the public-domain database of
the the National Center for Biotechnology Informa-
tion (NCBI) (www.ncbi.nlm.nih.gov/Entrez/).
We used our proposed method to calculate the dis-
tance matrix for the above 34 complete mtDNA
genomes, which consist of members of the primates,
rodents, ferungulates, and outgroups. The primates
consist of human, chimpanzee, pygmy chimpanzee,
baboon, gorilla, orangutan, and gibbon. The rodents
include rat, mouse, dormouse, squirrel, guinea pig,
and fruitbat. The ferungulates include cat, dog, har-
bor seal, gray seal, white rhino, indian rhino, blue
whale, finback whale, pig, armadillo, aardvard, ele-
phant, cow, sheep, donkey, horse, hippopotamus, and
rabbit. The outgroups include wallaroo, opossum,
and platypus.

The result plotted by the KITSCH program in the
PHYLIP package (Felsenstein, 1993) is shown in Fig-
ure 2. The overall structure of the phylogenetic tree
obtained by our proposed approach agrees with those
obtained by Reyes et al. (2000), Li et al. (2001), and
Otu and Sayood (2003). Due to the better clustering
of these 34 mtDNA genomes obtained by our method
than by that obtained by Li et al. (2001), our result
has reconfirmed the hypothesis of (rodents, (primate,
ferungulates) confirmed by Cao et al. (1998). The
result obtained by Otu and Sayood (2003) also re-
confirmed the hypothesis, but these authors studied
a set of 30 mtDNA genomes, which does not include
bat, aardvard, armadillo, and elephant. In particular,

with the analysis of the rodent group, our method,
like the other three mentioned methods, clusters dor-
mouse with squirrel (nonmurid rodents), and mouse
with rat (murid rodents). In accord with the results
obtained by Li et al. (2001), and Otu and Sayood
(2003), our method does not place the guinea pig,
whose position still remains an open question (Cao
et al., 1998), among the two well-supported rodent
clades – nonmurid rodents and murid rodents. Unlike
other three mentioned methods, our method groups
human closer to baboon than chimpanzees; rhinos
closer to whales than horse and donkey; and pig with
armadillo. However, the study of mammalian phy-
logeny is still controversial at large due to several con-
flicting findings regarding the phylogeny of eutherian
orders (Cao et al., 1998; Madsen et al., 2001; Murphy
et al., 2001; Otu and Sayood, 2003).

5 Concluding Remarks

From the foregoing sections, a distance measure
based on the Kullback-Leibler divergence of hidden
Markov models has been discussed for the comparison
of DNA sequences with emphasis on whole mtDNA
genomes. Based on reasonable results obtained from
the analysis of real datasets, this paper has presented
a computational method for alignment-free sequence
comparison to the research community of bioinfor-
matics, particularly comparative genomics, where the
computations of distances between whole genome se-
quences can be automatically performed by computer
processing, which are an impossible task for multiple
alignment methods. The present HMM model has
been formulated in the context of DNA sequences.
The proposed method can be extended to the com-
parison of protein sequences, one possible solution is
to modify the number of symbols to be twenty amino
acids and choose an appropriate number of neighbors
involving in the state segment. In general, the pro-
posed HMM is worth exploring further to take into
account any other useful biological information in the
modeling of the states and symbols.
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