
Domain Decomposition Approach for Moving Interface
Phenomenon by Using Boundary Element Method

KHASHAYAR  AAVANI†

Aerospace Research Institute-Ministry of Science, Research, and Technology, 
Tehran, 14657 IRAN 

Abstract:-In this  work,  we present  a new boundary element procedure for  the density  startified flow
based  on the domain decomposition method.  The  final  system of equations  for  the  whole  region  is
obtained by adding the set of boundary integral equations of governing equation for each sub-domain in
conjunction  with compatibility  and  equilibrium conditions  between  their  interfaces.  Obtained  results
show the tendency to increase of iteration number in computation at complicated shape of the internal
boundary.  
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1 Introduction
In many situations  of  hydrodynamic phenomenon,
two-layer  fluid  is  a  dominant  feature  of  fluid
motion.  Such two-layer fluid often contains jumps
in the density across the interface of fluid domains.
The interface of air and water or salt water and fresh
water is obvious example [1]. The density jump may
be  assumed  to  occur  in  an  infinitesimally  thin
interface in the mixture. Moreover, the behavior of
such an interface is important to understand various
hydrodynamic phenomena [2].
In the previous works, development of the efficient
numerical  procedure which is able to simulate the
time evolution of an interface  between  two  fluids
with  different  densities  are  performed.  The
numerical  solution  procedure  based  on  the  sub-
region  boundary  element  method  with  the  mixed
Eulerian-Lagrangian  approach  developed  in  the
moving  boundary  problems  in  potential  field  [3].
Now,  cluster  computation  by  work  stations  or
personal  computers  becomes  available  in  many
laboratories  all  over  the  world.  Because  of  their
potential  for  both  high-performance  and  cost-
effectiveness,  cluster  computing  will  attract  much
more attention of researches, and they will take the
most important  part in engineering computation in
stead of vector computing in near future. Under this
situation,  investigation  of  parallel  Finite  Element
Method  (FEM)  algorithm  [4,  5]  based  on  the
Domain  Decomposition  Method  (DDM)  is
increasing.  Recently,  Kamiya  et  al.  introduced
DDM for the boundary element analysis in order to
implement  the  parallel  Boundary  Element  Method
(BEM) computation [6, 7]. They showed the utility
of  BEM  analysis  with  domain  decomposition

scheme for some potential and elastic problems.
In this paper, we propose a new boundary element
procedure for the density stratified flow based on
the  domain  decomposition  method.  The  final
system  of  equations  for  the  whole  region  is
obtained  by adding  the set  of boundary  integral
equations  of  governing  equation  for  each  sub-
domain  in  conjunction  with  compatibility  and
equilibrium  conditions  between  their  interfaces.
The present study is an attempt to develop parallel
computation procedure for the interface motion of
the two-layer fluid in a rectangular region based
on domain  decomposition  method and  two sub-
domain boundary element method.

2 Mathematical Modeling of Moving Interface
Flow
As  shown  in  Fig.  1, 1 and 2 denote  the
portions of flow domain occupied by fluids 1 and
2, respectively. The fluid regions are separated by
a sharp interface.   Here,  the  subscript  i  denotes
each  flow  region.  In  addition,  denotes  the
density  of  fluids.  In  this  model,  we  assume
the  existence  of  velocity  potentials
ix , y , t i=1,2  in the fluids both sides of

the interface.  Then,  the  governing  equations  for
the  velocity  vector ui=uiui ,vi are  given  as
follows:

 ∇2i=
∂2i

∂ x2

∂2i

∂ y2
=0 in ii=1,2         (1)

 ui=∇i  in ii=1,2                            (2)
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where ∇=∂x ,∂y and ∇2 denotes  the  two-
dimensional Laplacian. There are two kinds of the
boundary conditions to be prescribed. The first one
is the wall boundary condition given by:

∂i

∂n
=n⋅∇i=0 on 

i i=1,2                      (3)

where n denotes the outward unit normal vector
on the boundary. The other is the so-called moving
boundary conditions on the moving interface  I .
They are the kinematic and dynamic conditions. As
the mathematical  expressions  of these  conditions,
we introduce its Lagrangian description in terms of
the Lagrangian  coordinates i ,i for a marked
particle on the moving interface. Consequently, the
liquid particles on the interface must move with the
interface  in  each  domain.  Then  the  kinematic
conditions for a particle are given by:

Di

Dt
=ui=

∂i

∂ x
on  I

i i=1,2 ,

Di

Dt
=vi=

∂i

∂ x
on  I

i i=1,2                         (4)

where D/Dt is  used  to  express  the  Lagrangian
derivative. Next, we also can express the dynamic
condition derived from Bernoulli’s equation as the
following equation on rate of change of i :
 
∂i

∂ t


1
2 {∂i

∂ x 
2

∂i

∂ y 
2}gi

Pi

i
=0 on  I

i i=1,2     (5)

where g is the acceleration of gravity,  and P i

are  the  pressure  on  the  interface  i
I .  The

interfacial  conditions  should  be  introduced  to  this
model. To require that two fluids do not separate or
cross  over  at  the  interface,  we  must  set  the
following kinematic condition:

∂1

∂n
=−

∂2

∂n
on  I

i i=1,2                            (6)

Next,  the  normal  stress  of  the  fluid  is  to  be
continuous  at  the  interface.  For  an  inviscid  fluid,
this  means satisfaction of the following dynamical
condition that the pressure is continuous: 

P1=P2 on  I
i i=1,2                                    (7)

In  this  paper,  we  consider   the   mathematical
model  given  by equations  (1)-(7) as the coupled
problem  of  the  boundary-value  problem  of
Laplace equation (1) and the initial-value problem
of the system of evolutional equations (4) and (5).

3 Theory of Domain Decomposition Approach
for Moving Interface in Flow Region
Let us consider the two layer flow with a moving
interface in a domain  , which is decomposed
into two sub-domains 1 and 2 as shown in
Fig.  2.  Here,  we  can  easily  transform the  field
equation (1) into the following boundary integral
equation  by  taking  into  consideration  with  the
linearity of Laplace equation (1):

∫


i

ix 
∂i

∗

∂n
x , ydx =∫


i

i
∗x , y

∂i

∂n
x d x i=1,2  (8)

in  which ∗ is  the  well-known  fundamental
solution given by:

∗x , y= 1
2

ln
1
r

on r=∥x−y∥          (9)

If Dirichlet  data on the moving interface  I is
known, then we can determine its  derivative  on
 I with   solution   of  the   above  boundary

integral equation. In order to solve approximately
(8), we use the Boundary Element scheme.
In  Domain  Decomposition  approach  of  (1),  (6)
and  (7),  several  formulations  can  be  derived
according  to  treatment  of  inter  boundary
conditions of (6) and (7). In this study, we employ
the  continuity  of  Dirichlet  data  (i.e.,  velocity
potential)  and  Neumann  data  (i.e.,  normal
velocity ) as follows:

2=1 on  I                               (10)

∂1

∂n

∂2

∂n
=0 on  I                               (11)

To treat the inter sub-domain boundary condition,
the  Lagrange  multiplier  is  introduced  as
follows:

1==
1

2−




on  I                          (12)

Applying  the  above  conditions  to  (8),  the
following inverse formulation is derived:



∑
i=1

2 [ ∫
I
i

i

∂i
∗

∂n
d− ∫


I
i

i
∗
∂i

∂n
d]∫I

∂1

∂n

∂2

∂n d=0

                 (13)

4 Uzawa’s Algorithm for Domain Decomposition
Approach
Equation  (13)  consists  of  the  usual  boundary
integral  forms  for  the  sub-domain i  and  the
constrain term derived from the energy equilibrium
as  well  as  the  normal  velocity  continuity  among
sub-domains. Uzawa’s method [4], which is one of
iterative  solution  techniques,  is  employed  here  to
solve  (13).  Uzawa’s  algorithm  is  summarized  as
follows:

• Step 1: Initialization

0=: constant                                             (14)

• Step 2: Computation in each sub-domain:

∑
i=1

2 [ ∫ I
i

i

∂i
∗

∂n
d− ∫

 I
i

i
∗ ∂i

∂n
d]∫ I

nn d=0

                                                                             (15)

where  denotes  the  residual  value which is  the
continuity of flux. In this step, we solve the Laplace
equations under following boundary conditions:

n=
∂1

∂n

∂2

∂n
on  I                                 (16)

where superscript n indicates the n-th iterative step.

∂i

∂n
=0 on 

i                                          (17)

1=
n , 2=

n on  I
i                  (18)

where  superscript n indicates  the nth iterative
step.

•Step 3: Modification of Lagrange multiplier n :

n1=nn                                                  (19)

where omega denotes the convergence coefficient.

• Step  4: Judgement of convergence
The criterion for convergence employed here is:

∫
 I

n⋅n

0⋅0
d≤                                              (20)

If n has not converged yet, return to step 1 by

setting n1n .  By  implementation  of  the
above iterative method, we can get the potential
and ∂i/∂nk1 on  the  I

i  and  use  these
values for estimation of interfacial dynamics.

5  Formulation  for  Moving  Interface
Computations
We will  determine the particles on the interface
whose velocities ∂t X I ,∂t Y I are a mean values
of  velocities  of  the  two  fluids.  The  kinematic
condition (4) is modified to the following forms
as given by:

∂ X I

∂ t
=

1
2 [1 ∂1

∂ x
1−

∂2

∂ x ] ,

∂Y I

∂ t
=

1
2 [1 ∂1

∂ y
1−

∂2

∂ y ]                (21)

where  is   the   constant  in  which =1
corresponds to the lower fluid, =−1 is to the
upper  fluid  and =0 is  to  mid-interface
particles. In this computation, we adopt =0 ,
and  the  velocity  of  interface  is  mid-interface
particles  of  the  layer.  This  system  to  be
considered  as  the  one  of  first-order  ordinary
differential  equations  can  be  solved
approximately  by  using  the  time  integration
scheme. Applying the Euler scheme to the above
system, we can determine the new value of 

and  at the k1th time step. The procedure
can be repeated to track the  time history of the
interface movement.

6  Numerical Experiments  and Evaluations
In order to examine applicability of  our  method
proposed,   we   show   the   obtained  numerical
results.  We simulate the motion of two different
density  fluids  in  which  are  stratified  for  the
vertical direction under gravitational force g. Two
fluids are settled in the rectangular container with
non-dimensional  width, L=0.04 and  height,

H=0.06 . And, the container is filled with the

lower fluid to a height, h=0.03 at the stationary
state.  This  interface  is  initially  flat,  but  a
perturbation  is  supplied  by  specifying  the
y-coordinate  component  of  its  position  at  the



interface  as  y=A0 cos  x /L .  Numerical
computations  are carried out for the case given by
parameters  such  that A0=0.0001 , g=1.0 and

 t=0.005 . The fluid domains is divided into 50
boundary  segments  and  both  interface  parts  are
divided into 20 segments, respectively. In Figure 3,
we show the profiles of interface at each time step
in the case of 1/2=1.0 /2.0 as density ratio of the
two  fluids.  The  perturbation  drives  the  unstable
fluid interface, causing it to flow down along  the
right edge of the box in the form of a fluid spike,
while a bubble  moves up along the left  box edge.
Figure 4 shows the profiles of deformed  interface at
three  cases  at  different  time.  Figure  5 shows  the
good convergence of Uzawa’s  iteration  in  Case I.
Figure  6 shows the situations of convergence using
Uzawa’s  method  at  each  deformation  level
of  interior-interface  of  domain  decomposition
computations.  From this  results,  we can recognize
the convergence speed of Case I is faster than the
speed of Case II or Case III.

7 Conclusion
In conclusions, we have shown the applicability  for
BE analysis with DDM to numerical simulation for
moving  boundary  problems.  We  introduced  the
DDM which is based on construction of the set of
BEM  for  each  sub-domain  in  conjunction  with
compatibility  and  equilibrium  conditions  on  the
interface.  Uzawa’s  method is  effective  to  iterative
computations  for  this  type  problem.  This  solution
procedure can simulate the interfacial movement of
density  stratified  flow.  Obtained  results  show the
tendency  to  increase  of  iteration  number  in

computation  at  complicated  shape  of  the
internal  boundary.  Consequently,  this  Domain
Decomposition-BE  procedure  will  contribute  to
the  establishment  of  parallel  BEM  computation
for further applications.
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Figures and Graphs

Figure 1:  Geometrical configuration of problem.           Figure 2:  Problem splitted into two sub-domains.

 



Figure 3:  The schematic histories of time-dependent behavior in a moving boundary phenomenon.

Figure  4:   Three  profiles  showing  interface  deformations  at  different  out  put  times. Case I :small deformation
at t=0.000sec.  Case II :middle deformation at t=0.130sec. Case III :large deformation at t=0.165sec.

Figure 5:  Convergence process of Uzawa’s iterations at Case I.       Figure 6:  Comparison of convergence situations using DDM
                                                                                                                             applied to three cases.


