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Abstract:- In this paper, the coherent structures of a
random-nonrandom field are extracted using the Mean
Modal Decomposition(MMD) method. As the basis func-
tions, the classical Fourier modes as well as the Proper
Orthogonal Decomposition(POD) modes are used as the
eigenmodes in the Galerkin projection. At first, the MMD
method is introduced and the place of method in the
hierarchy of semi-deterministic methods(SDM) and its
connection with the other methods especially the POD
are described. Then as an example of application of
the method, a random-nonrandom field which is obtained
from the solution of the Kuramoto-Sivashinsky(KS) equa-
tion is analyzed. The KS equation is solved numeri-
cally by the spectral Galerkin method to obtain a spatio-
temporal chaotic field. The appropriate ensemble is con-
structed and both the Fourier and the POD eigenmodes
are obtained. The ensemble averaging are taken for both
eigenmodes and their resultant spectrum are compared.
Results show the ability of the method to capturing the
mean behavior of the coherent structures and sensitivity
of the method to choosing the basis functions.
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1 I ntr oduction

In the second half of the last century, gradually the con-
cept of the coherent structures was appeared in the liter-
ature of fluid mechanics. Now after more than a half of
a century, finding suitable analysis methods for these un-
steady, high energetic, large scale structures is still one of
the most challenging issues in the turbulent flows area. In
this context, one of the most successful methods has been

the decomposition of the field into the coherent and non-
coherent parts. The basic idea of such decomposition first
arrived in the work of Reynolds and Hussein[1], where
they suggested a triple decomposition for each quantity
of the field. Their coherent part was obtained from a
phase or conditional averaging. Such a decomposition, as
has been shown by Ha Minh[2], make a good framework
to capturing the mean behavior of the coherent struc-
tures. Based on this decomposition, many methods which
now, after Ha Minh, are called the Semi Deterministic
Methods(SDM) are appeared. various SDMs are arrived
in the literature with different names such as the Un-
steady Reynolds Averaged Navier Stokes(URANS), Tran-
sient Reynolds Averaged Navier Stokes(TRANS), Very
Large Eddy Simulation(VLES), and so on. These meth-
ods more or less are based on an ensemble averaging
process. Although the ensemble averaged Navier Stokes
equations are the same as the RANS equations, however
the types of modelling have to be changed[3, 4, 5]

On the other hand, another well known method for
capturing the coherent motions is the Proper Orthog-
onal Decomposition(POD) method, first introduced by
Lumley[6]. In the POD method, the eigenfunctions of
some first larger eigenvalues of the autocorrelation tensor
are found and in this manner, the most energetic modes
of the field are captured. Then the whole of the ensemble
can be reconstructed approximately by a Galerkin pro-
jection which its eigenmodes are the POD modes [7].

Recently the Mean Modal Decomposition (MMD)
method has been suggested as a new method for solution
of the turbulent flows by the author[8]. Essentially the
method consists of projection of the field, collected in an
appropriate ensemble, into an appropriate function space
and then taking an ensemble averaging on each mode in
that space. The number of modes, which somehow deter-



mines the desired level of deterministic computations, is
preassumed and in this manner, the number of coupled
equations that should be solved will be determined. In
this method all the non-random modes, in the sense of
the ensemble averaging, are resolved and all the random
modes should be modeled. Therefore the method could be
placed into the semi-deterministic methods. One of the
most advantages of this method in comparison with some
of the other similar methods, is that there is a straight for-
ward way to derivation of the mean modal equations from
the governing equations of the phenomenon[8]. On the
other hand, it seems that the ensemble averaging process
do not vanish the coherent and semi-coherent motions
[2, 5]. So it is expected that this method could capture
the coherent structures from a random-nonrandom field.
The projection could be done in spatial or tempo-

ral fashions. The Spatial Mean Modal Decomposi-
tion (SMMD) results in an evolution system of equa-
tions whereas the Temporal Mean Modal Decomposition
(TMMD) yields to a set of equations which produces a
periodic approximation of the field[8].
In this paper, the MMD method and its main

properties are presented firstly. Then the spectral
Galerkin method is used to direct numerical solution of
the Kuramoto-Sivashinsky equation to obtain a spatio-
temporal chaotic field with dominant coherent structures.
Using these data, an appropriate ensemble is generated.
This ensemble, then is analyzed with the MMD method.
For the POD analysis, the Singular Value Decomposi-
tion(SVD) in conjunction with the method of snapshots
is used and for the MMD eigenmodes, both the POD
modes and the classical Fourier modes are used. Finally
the field and the spectrum of the approximate fields are
compared with each other.

2 M ean M odal Decomposition
and Aver aging

To emphasize the methodology and avoid complexities of
multi dimensional formulations, the formulation of the
mean modal decomposition for one dimensional scalar
functions is presented in this section. As will be shown,
almost all the major characteristics of the method are
observable in the one dimensional formulation. However,
the formulations for spatio-temporal multi dimensional
fields and its various forms will present in subsequent
sections. Consider an ensemble {um}Mm = 1 of a scalar
field um = um(t) with M elements, describing a more

or less non periodic oscillating repeatable phenomenon
and t ∈ [t0, t0 + T ] is the independent variable, say time.
On the [t0, t0+T ] interval the inner product is defined as

(u, v) =
1

T

∫ t0 + T

t0

uv † dt (1)

in which ()† denotes the complex conjugate. Also the
ensemble averaging is defined as

〈u〉(t) = 1

M

M∑

m = 1

um(t) (2)

We want to provide a unique representation for the whole
of the ensemble which meanly show the behavior of the
nonrandom,i.e. the coherent part of the field. In this
context, the mean modal representation of the ensemble
{um(t)}Mm = 1 with the mean fundamental frequency ω =
2π
T
until N terms is defined as

〈u〉ω,N (t) =

+ N∑

n = −N

ūnϕn(t) (3)

where ϕn(t) s are orthonormal functions on [t0, t0 + T ]
and the coefficients ūn are obtained from the application
of the mean modal operator F̄n{} on ensemble {um} as

ūn = F̄n{um} = 〈(u, ϕn)〉 (4)

Note that the mean modal operator has an ensemble av-
eraging process for each mode and therefore it is expected
to discard the random and non periodic motions for each
mode. Then each element of the ensemble {um(t)}Mm = 1

can be reconstructed by definition of a two part decom-
position as

um(t) = 〈u〉ω,N (t) + u′m
ω,N (t) (5)

It can easily be shown that according to above definitions,
the fluctuation term u′m

ω,N has the property

F̄n{u′m
ω,N} = 0 (6)

It is a well-known classical property of the modal de-
composition that for the stationary random processes,
the mean amplitude of the process is zero (Pope, 2002).
Therefore the decomposition (5) apart each involving
mode into random and nonrandom and assign the mean of
the nonrandom part into the mean modal term. It means
that the fluctuation part in (5), contains the background



random motion, and has the property that its ensemble
average for each mode are vanished. As will be shown,
this fundamental property make decomposition (5) such
that it can directly imposed in the governing differential
equations, say the N-S equations and it is one of the ad-
vantages of this method to some other methods. In the
next section the main properties of the mean modal de-
composition is presented.

2.1 P r oper ties of the M ean M odal De-
composition

Without dealing the details of derivations, the main im-
portant properties of the decomposition and the mean
modal operator that will be needed to implement ion of
the decomposition into the N-S equations are listed and
explained shortly here. According to our final goal, i.e.
implementation of the decomposition into the N-S equa-
tions, our focus will be on that properties of the mean
modal operator (4) which will be needed in the derivation.
Obviously this list is not complete and a detailed inves-
tigation should be contained its other important mathe-
matical properties.

1. The mean modal operator is linear. If we have two
different scalar fields u and v in each ensemble el-
ement, say different velocity components, then we
have

F̄n{αum + βvm } = αF̄n{um }+βF̄n{vm } = αūn+βv̄n
(7)

in which α and β are not functions of the independent
variable.

2. To determination of the mean modal representation
of the derivative with respect to the independent
variable, specification of the function space will be
needed. If for instance assuming a Fourier space,
then

F̄n{
∂um

∂t
} = inF̄n{um } = inūn (8)

3. The mean modal operator can be applied on the
mean modal approximation and the result is the
same as its operation on the whole of the ensemble

F̄n{〈u〉ω,N} = F̄n{um } = ūn (9)

4. The mean modal of the product of two mean modal
approximations in each mode, represents the effects

of all other modes on the mode which is considered

F̄n{〈u〉ω,N〈v〉ω,N} =
+ N∑

j= −N

+ N∑

l= −N︸ ︷︷ ︸
j+ l= n

ūjv̄l =
N∑

j= −N

ūjv̄n−j

(10)

5. In spite of the Reynolds averaging, the mean modal
of the mixed fluctuating and mean modal approxi-
mation will not be zero and as will be mentioned,
should be modeled in the resulting equations

F̄n{v′mω,N 〈u〉ω,N} �= 0 (11)

All above properties but (8) are valid for any orthonormal
functions defined on the domain t ∈ [t0, t0+T ]. The mean
modal decomposition can be directly applied into the N-
S equations using these properties. As will be shown,
in spite of the RANS equations, the results are a sys-
tem of coupled, nonlinear, non closed of PDEs that have
some terms arising from the nonlinear interaction of the
fluctuations and the mean modal term, which should be
modeled.

2.2 Connection With the P OD M ethod

The mean modal decomposition as defined here, is a two
part decomposition. Therefore each element of the en-
semble {u}Mm = 1 is decomposed into two parts as

um(t) = ua(t) + u′m(t) (12)

in which ua, i.e. the mean modal representation, is the
approximation part which is expected to be a represen-
tation for whole of the ensemble {um}mm= 1 and u′m, i.e.
the fluctuation part, is the deviation of the approxima-
tion part from the exact values in each ensemble element.
Now projection of the above relation on the nth mode,
i.e. inner product of the relation with ϕn(t), yields to

um
n = (ua)n + (u

′m)n (13)

This is the modal form of relation (5) and easily could be
shown that is a sufficient condition for it and is valid for
all the modes involved in the field. The right hand side
of relation (13) have two variables. Therefore for each
mode there is one equation for two variables. To unique
determination of the variables one additional relation or
restriction is needed. For example, in the Reynolds de-
composition, this additional relation is provided by the



Figure 1: The power spectrum (root mean square) of u.
The spectrum is obtained from time history. Because of
quadrature nature of the r.m.s, time history can be re-
placed the ensemble averaging without any serious error.

fact that the mean of the fluctuation part is vanished. In
mean modal decomposition the restriction is constructed
according to the relation (6) which means that the en-
semble average of (u′m)n is vanished for all modes, i.e.

〈(u′m)n〉 =
1

M

M∑

m = 1

(u′m)n = 0 (14)

which results in

(ua)n =
1

M

M∑

m = 1

(um)n (15)

which is the relation (4).
On the other hand, the POD method can be viewed as a
two part decomposition just like the relation (12) with an-
other restriction. In fact in the POD method, the restric-
tion is directly applied to the approximation part such
that

max
〈|(ua, ϕn)|2〉

‖ϕn‖2
(16)

with our notation and with respect of our assumption
about orthonormality of the functions ϕn, the above re-
lation can be written as

max{ 1
M

M∑

m = 1

[(um)n − (u′m)n]
2} = max{ 1

M

M∑

m = 1

(um
a )

2
n}

Figure 2: Spatio-temporal representation of the u for
about 100 seconds. The boundary conditions are periodic
and L = 400. The presence of the coherent structures is
obvious.

(17)

In such interpretation of the POD method, relations (13)
and (17) determines the approximate representation of
the field uniquely. In fact in the POD method in the no-
tation of relation (13), we want to find the approximation
part such that the ensemble average of the square of (ua)n
be maximized.
As one can see, the mean modal approximation and the
POD approximation, both get an orthogonal expansion
representation of the field but the coefficients of the POD
representation are obtained such that the most energy of
the field be captured This is because of the power of the
norm in the relation (16) which is a measure of the kinetic
energy.

2.3 E xtr action of the Coher ent Str uc-
tur es

As a first real application of the MMD method to ex-
traction of the coherent structures, to avoid the complex-
ities of multidimensional problems and the boundaries,
which usually forced to do a kind of modelling, the one
dimensional KS equation with periodic boundary condi-
tions has been chosen to produces a spatio-temporal field
with dominant coherent structures. The one dimensional



Figure 3: Comparison of Fourier and POD mean modal
decomposition in extraction of the coherent structures.
Note on the phase of the Fourier modes with the original
field.

drift free KS equation is defined as[7]

ut + uxx + uxxxx + uux = 0 L ≤ x ≤ 0 (18)

with periodic boundary conditions

u(0) = u(L) ; ux(0) = ux(L) , ... (19)

In such definition of the KS equation, the spatial pe-
riod length scale ‘L’ plays the rule of the bifurcation con-
trol parameter and for enough large ‘L’, we are faced
with spatio-temporal chaotic field very similar to high
Reynolds number NS turbulence[7].
Although L > 10π produces more or less appropriate

results, however, to following the work of Berkooz etal[10]
and to checking the results, and also to produce a field
as similar as possible to the NS turbulent fields, in the
present work, the KS equation is solved for L ≈ 400 by
the spectral Galerkin method with 512 eigenmodes. The
resulting space-time field and the power spectrum of the
solution are presented in figures(1) and (2).
Then an ensemble with 20 elements, each includes 100

seconds time history were produced from a nominally the
same initial conditions. To produce each element, the
300 first Fourier modes were forced to be nonrandom, i.e.
read from the same file, in each run and the remainder
of the modes were read from the last time step from the

Figure 4: Field obtained from the mean modal decom-
position method with the POD eigenmodes. note to the
wave number(wave length) of the coherent structures in
comparison to their time duration.

last run which somehow get a random nature to the high
frequency modes but with more or less the same spectrum
as a run with all the modes nonrandom. It is important to
note that because of the difference between the time scales
of the repeated and random modes, we needed a settling
time until the small scales can affect the large scales. For
the present case, the 300 Fourier modes repeated, this
settling time was about 2.5 seconds which in comparison
of all the 100 seconds is almost negligible.

For the mean modal analysis, each element of the en-
semble then projected into a number of modes (from 10 to
150 in various runs) and then the average of these modes
were calculated to obtain a mean modal representation
for the whole of the ensemble.

On the other hand, for the POD calculations, in each
time step, the 20 element ensemble is used to construct
the autocorrelation matrix. Then the method of snap-
shots is used to reduce the dimension of the system and
the SVD method is used to find the eigenvalues and eigen-
vectors. Then by the use of these eigenfunctions, the
approximate representation of each ensemble element is
done and the power spectrum of this approximate rep-
resentation is calculated. The figures (3) and (4) show
some of the results.

In the Fig.(3) a part of the space domain in t = 80



is shown as an example. The following items could be
observed

a) Both the Fourier and the POD mean modes gener-
ally are in agreements in the capturing the dominant
part of the motion with more or less the same mean
amplitudes.

b) In the reconstructed field with the Fourier modes,
obviously a better phase capturing is achieved. It is
so in the other parts of the field.

c) The ensemble averaging process, is decreased the
mean amplitudes of the POD eigenmodes. In the
opinion of the author, it is done because of the
quadratic nature of the optimization process in the
POD(we maximize the square of the amplitudes)
which avoid discarding of the random parts.

Figure(4) shows the field obtained from the Fourier mean
modal method. First of all, the presence of the coherent
structures is shown again. However in comparison with
the Fig.(2), although the wave number of the coherent
structures is captured correctly, as we saw in the power
spectrum also, however their frequency, i.e. their time
durations, are different. In fact they are seems truncated
in time. In opinion of the author it is because of the
method of construction the ensemble. In fact some nu-
merical experiments with different percent of random and
nonrandom modes shows obvious effect on the time scale
of the coherent structures.

3 Conclusion

The KS equation is solved numerically to construct an
ensemble which is used to analysis of the ability of the
MMD method to extraction of the coherent structures.
For mean modal analysis both classical Fourier modes
and the POD eigenmodes are used. The results shows
good ability of the method to capturing of the coherent
structures and sensitivity of the method to the chosen
basis functions.
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