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Abstract: A turbulent scalar transport model is proposed which is based on the analytical framework provided by spectral 
theory of turbulence and penetration theory.  The new phenomenological model unifies diffusion and convection terms in a 
single transport equation, incorporating molecular properties of the diffusing scalar.  In describing the turbulent dispersion of 
gases in atmospheric turbulent boundary layer, a concept of two turbulent time scales is introduced.  The dispersive time scale 
for horizontal dispersion in the atmosphere is taken to be the reciprocal of geostrophic frequency, a well known parameter in 
earth science.  The dissipative time scales for various stability classes are determined using Pasquill-Gifford experimental 
correlation.  Proposed model predicts horizontal dispersion coefficient under various stability conditions within ± 20 % of 
Random Force theory.  Model is extended for vertical dispersion using bulk Richardson number which seems to perform 
reasonably well. 
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1. INTRODUCTION 
A general consensus has developed on the theory of 
molecular diffusion, in that molecular collisions and the 
consequential exchange of momentum and energy 
between molecules is the fundamental mechanism 
responsible for diffusion.  Therefore, diffusion of a binary 
mixture of gases depends on their mutual collision cross 
section, an intrinsic property of the mixture[1]..    Although 
various independent strategies can be adopted for 
estimating the rate of turbulent transport under specific 
flow conditions, there is no generally acceptable model for 
turbulence [2].  Three major theories, from which most of 
the analytical turbulent transport models are derived (i.e., 
statistical, similarity and the gradient transfer theories) 
emphasize flow characterization and properties of the bulk 
fluid and ignore any dependency on the microscopic 
characteristics of the mixture.  It is well known that on a 
micro level the phenomenon of scalar transport is a 
molecular process.  As Treylab [3] pointed out, molecular 
diffusion, is the ultimate process. Many attempts have 
been made to establish an analogy between Brownian 
motion and turbulent diffusion [4].  One such theory 
proposed by Gifford [5]  has drawn considerable attention 
for modeling atmospheric dispersion.  These models 
develop analogies with the conventional description of 
molecular diffusion which, for large time, simplifies  ttoo::  

                         tDABM 2=σ                           (1)                                            

where Mσ is the molecular dispersion coefficient, ABD is 
the mutual molecular diffusivity of the species A & B, and 
t is the diffusion time.  This paper proposes an alternative 
analytical approach for modeling turbulent transport of a 
passive scalar, which is very similar to Eq. (1) suggesting 
that molecular diffusion is in fact the limiting case of 
turbulent transport.  
 

2. THEORY 
In the present mathematical development, it is proposed 
that each state of turbulence can be represented by a 
characteristic energy spectrum, which describes all 
significant transport properties of the flow.  This energy 
spectrum is associated with a set of characteristic time 
scales; therefore, it is argued that transport characteristics 
of a flow field can be represented by these time scales. 
There is general agreement that the rate of molecular 
diffusion is limited by the available free energy (i.e. 
Gibb’s free energyκθ  ).  It is further argued that the 
excess energy required for accelerated turbulent dispersion 
arises from the dissipation of eddies as they cascade to 
smaller scales.  Molecular collisions are responsible for 
the transfer of energy and momentum from the bulk fluid 
molecules to the mixing scalar, which results in their 
transport and diffusion in the bulk fluid.  Therefore, it is 
necessary to incorporate the molecular characteristics of 
the mixture in a rigorous mathematical model for turbulent 
transport.  This approach is a significant philosophical 
improvement to most current turbulent transport models, 
which focus mainly on the flow characteristics and ignore 
any dependency on intermolecular properties of the 
mixture. 
The proposed model for turbulent transport is based on the 
following assumptions: 

A) In a fluid medium, intermolecular collision is the 
fundamental mechanism of energy and momentum 
transfer between molecules; therefore, convective or 
turbulent transport phenomenon is also influenced by 
intermolecular characteristics of the mixture; 
 B) The driving force for turbulent dispersion is 
related to the rate of energy dissipation in the flow 
field; 
C) Turbulence is best represented by energy spectrum 
function that characterizes the distribution of energy 
amongst eddies of various sizes; 
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 D) Gravity/buoyancy is the only additional factor that 
influences vertical dispersion. 
 

3. Time Scales 
Although turbulent phenomena are governed by a wide 
range of time and length scales, most of the conventional 
models for turbulent transport utilize only a single time (or 
length) scale.  In this paper, turbulent diffusion is modeled 
using two independent time scales; the Dissipative Time 
Scale and the Integral or Dispersive Time Scale.  Two 
time scale approach is similar to the Multiscales Methods 
[6], however, available literature does not associated any 
physical significance to these various scales.  
 
The physical existence of two independent time scales can 
be established by using Gifford's [5] expression for the 

rate of energy dissipation, 
LT

v 2
~ε  and eddy 

diffusivity, LTvK 2= , whereε  is the rate of energy 

dissipation per unit mass, 2v  is the mean square velocity, 
and LT is the Lagrangian integral time scale.  

Thus, 2= LTK ε .  For homogeneous stationary turbulence, 
the average energy dissipation rate per unit mass is 
estimated by: 

                      dkkEk )(2= ∫
∞ 2

0
νε                 (2)                                      

where )(kE  is the energy spectrum defined by the 
Fourier transform of the correlation function [7, 8].  

)(kE can be obtained by using the asymptotic form of the 
correlation function used by Gifford [5], and others [9] : 
                                   TeR /=)( ττ                           (3) 
The Fourier Transform of Eq.(3) gives the following 
expression for one dimensional energy spectrum; 
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This energy spectrum can then be used in Eq. (2) to 
obtain ε .  Substituting ε  in the expression for eddy 
diffusivity yields: 
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Since values reported for eddy diffusivity (K ) are orders 
of magnitude larger than the kinematic viscosity (ν ) one 
must conclude that there are at least two independent time 
scales involved in the phenomenon of turbulent transport.  
The time scale, T , in the denominator of Eq.(4) is related 
to the rate of energy dissipation and is much smaller than 

LT , which is associated with the phenomenon of eddy 
dispersion.  The use of two time scales to describe 
turbulent diffusion is reasonable because the average scale 
of eddies being destroyed and dissipating their energy is 
much smaller than the corresponding scales of eddies 
responsible for large scale dispersion.  Two time scales 

assumption can be readily tested by comparing the 
magnitude of various quantities in Eq.(4) for atmospheric 
diffusion, K  ~ 105 m2 sec-1,  ν  ~ 10-6 m2 sec-1  and  π2 ~ 

101.  Therefore, 
K

L

T
T

must be on the order of 106, which 

agrees well with reported [10] ratio of the two 
corresponding scales. Based on this comparison, it is 
believed that in Similarity approach, where eddy 
diffusivity is related to fluid viscosity by using a scaling 
factor, the scaling factor may possibly be the squared ratio 
of the two time scales.  
  
4. Mathematical Model 
Turbulent gas diffusion can be viewed as an interfacial 
phenomenon, where eddies from the bulk fluid penetrate 
the plume for a finite duration of time.  During this time, a 
mass exchange takes place between the plume and the 
eddy.  The proposed model assumes that the nature of this 
mass transfer is solely molecular.  Afterwards, these 
eddies move away from the interface into the bulk fluid 
where smaller eddies penetrate them and the process is 
repeated.  A cascade of eddy penetrations, molecular 
diffusions, and transport result in turbulent diffusion.  It 
follows from this description of turbulent transport that the 
turbulent dispersion coefficient can be obtained by 
multiplying the expression for the turbulent scalar (mass) 
transfer coefficient with a characteristic time scale.  
Various theories for interfacial mass transfer were 
carefully examined to establish an expression for the mass 
transfer coefficient under turbulence.  The common two 
film theory [11] was found to be inappropriate for this 
application because of the unrealistic concept of a stagnant 
film at fluid interface and the lack of film stability as 
expected under turbulence.  
Higbie [12] recommended a Penetration Theory for 
estimating mass transfer at a liquid-gas interface.  Using 
an appropriate choice of model parameters, Higbie’s 
approach can be applied to estimate interfacial mass 
transfer for any two fluids.  Penetration theory assumes 
that the fluid surface consists of small elements (i.e. 
eddies) that contact the other fluid at the interface for a 
given duration of time before being swept back into the 
bulk fluid and remixed.  Each out-going fluid element is 
then replaced by another similar fresh element from the 
bulk fluid.  A detailed discussion of the applicability of 
penetration theory is given by King [13].  Based on this 
discussion it is concluded that under turbulent flow 
condition penetration theory is applicable for modeling 
atmospheric mixing.  Penetration theory leads to the 
following expression for the transient mass transfer 
coefficient: 

                                        
t

D
K AB

T π
=                          (5)                  

This unsteady-state model provides a reasonable 
approximation for mass transfer under turbulent 
conditions.  The duration of eddy penetrations/exposures 
are typically small and an average mass transfer 
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coefficient over the entire duration of exposure (i.e., kT ) 
is obtained by time integration of Eq.(5).  The final 
expression is: 

k

AB
T

AB

k
T T

D
dt

t
D

T
K

k

ππ
2=

1
= ∫

0

          (6)                                         

This paper assumes that the turbulent mass transfer 
coefficient for atmospheric diffusion can be expressed by 
penetration theory.  Consistent with assumption A, 
penetration theory relates the turbulent mass transfer 
coefficient with intermolecular characteristics of the 
mixture, i.e., the mutual diffusivity, which in turn depends 
on the molecular collision cross section.  It is postulated 
that a further correlation can be established by multiplying 
the mass transfer coefficient with an appropriate time scale 
to obtain the turbulent dispersion coefficient, that is: 

L
k

AB
y T

T
D
π

σ 2=                          (7) 

where LT is the Lagrangian integral time scale, a scaling 
factor which depends primarily on the flow geometry. 
 
Prediction of the dispersion coefficient (Eq. 7) requires 
determination of the two time scales suitable for the 
specific geometry and flow conditions.  Eddy exposure 
time (i.e., kT ) is related to eddies in the bulk fluid that 
penetrate the plume at the interface where some of the 
plume mass will diffuse into the eddy and be carried back 
into the bulk fluid.  It is conventional to use Kolmogorov’s 
[14] time scale for eddy exposure time scale [15, 16, 17] 
which is defined as: 

                                
ε
ν

=kT                                  (8)                                                         

However, Yakhot [18] concluded that there exists an entire 
spectrum of the dissipative time scales and the 
Kolmogorov's time scale limit may not be physical.  
Usman [19] also suggested an entire spectrum of 
dissipative time scales, the average of which describe the 
mean transport rate for specific fluid and flow geometry.   
The average dissipative time scale is related to the fluid 

kinematic viscosity (
ρ
µ

ν = ) and the rate of energy 

dissipation ( ε ) from all the dissipating scales.  Consistent 
with our assumption B, we propose to use the average 
dissipative time scale kT for the average eddy exposure 
time, which makes the diffusion rate a function of the 
energy dissipation rate.  The mixing or dispersive time 
scale in Eq.(7), LT , is associated with the phenomenon of 
dispersion and is often approximated by Lagrangian 
integral time scale:  

∫
∞

0
)(= ττ dRTL                    (9)                                                                 

For a point source, dispersion and the corresponding time 
and length scales are dynamic functions of the travel time.  
For the specific case of zero initial velocity, both 
Papoulis[20] and Gifford[5] proposed the following 
autocorrelation function: 

 )-1(=),(
2--

LL T
t

T eetR
τ

τ                  (10)                 
This makes velocity autocorrelation a function of travel 
time, which appears to contradict the assumption of 
stationary turbulence.  The literature, however, does not 
adequately stress that this velocity autocorrelation function 
is for a parcel of "pollutant" or an external scalar 
introduced into the bulk flow at time t = 0.  The term 
outside the parentheses of Eq.(10) represents the 
correlation function for the bulk fluid in turbulent motion.  
For the case of zero initial velocity, all pollutant particles 
are in random (or Brownian) motion with a Maxwellian 
velocity distribution having a zero mean velocity.  
Initially, the velocity correlation among the pollutant 
particles is also zero.  As time progresses, the turbulent 
flow field starts to affect the pollutant by transporting it 
along with the bulk fluid.  The velocity distribution of 
pollutant particles will also change and exhibit a positive 
mean velocity in the direction of bulk flow.  As the term 

)-1(
2-

LT

t

e approaches unity, both the mean velocity and 
the autocorrelation function approach asymptotic values 
equal to that of the bulk fluid. 
 
Saffman [21] arrived at similar results based on his 
argument that molecules of a diffusing "substance" behave 
differently than the fluid particles.  His intuitive 
expression (in his own words) resembles Eq.(10).  He also 
concluded that the interaction between molecular diffusion 
and turbulence can reduce dispersion.  Saffman is the first 
one to recognize the interaction of molecular and turbulent 
diffusion from a statistical view point.  His analysis, and 
almost all the other existing literature, is based on the 
assumption that turbulent and molecular diffusion are 
"independent and additive" processes.    Usman et. al. [22] 
have questioned the assumption of mutual independence 
of turbulent and molecular diffusion by suggesting that 
turbulent and molecular processes are manifestation of the 
same microscopic phenomenon (i.e. molecular scattering). 
 
Incorporating the time-dependent form of velocity 
autocorrelation function into Eq.(9), the expression for the 
Lagrangian time scale for the y direction (i.e. horizontal 
direction perpendicular to mean velocity) can be written 
as: 

            
y

L
T

t

y
L

T

t

Ty
L

TeT

deeT

L

L

∞

2

∞

0

2

)1(=∴

)1(= ∫ τ
τ

                          (11)               

where y
LT ∞ is the asymptotic value of the Lagrange integral 

time scale in y direction.  It should be noted that the 
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vertical asymptotic integral time scale ( z
LT ∞ ) may be quite 

different from y
LT ∞  as the scale of vertical waves are 

limited by the depth and stratification of the planetary 
atmosphere.  Incorporating these time scales in the model, 
the final expression for the dispersion coefficient becomes: 

       y
L

T

t

k

AB
y Te

T
D y

L
∞

2-

)-1(2= ∞

π
σ               (12)                           

The average dissipative time scale (i.e., kT ) is a critical 
parameter defining the state of turbulence.  As Usman [19] 
and Yakhot [18] recognized the existence of an entire 
spectrum of dissipative scales, therefore, an averaging is 
necessary to estimate the transport characteristics of the 
flow.  The average dissipative time scale depends on the 
rate of energy dissipation, which, in turn, is a function of 
the kinematic viscosity of the fluid and the energy 
spectrum.  The energy spectrum, )(kE , fully expresses the 
transport characteristics of the flow.  This is consistent 
with our assumption C.   
 
5. Model Extension for Vertical Dispersion 
For vertical atmospheric dispersion, in addition to 
mechanical turbulence caused by surface roughness, 
thermal turbulence also contributes to the process of 
dispersion, and may at times become the dominant 
contributor [23]. Fluctuations due to mechanical 
turbulence tend to be relatively small and quite regular 
[23].  However, large mechanical eddies are also possible 
in rough terrain.   Thermal eddies are both larger and more 
variable in size than the most mechanical eddies [23]. 
 
The presence of thermal waves or eddies further enhances 
vertical dispersion.  This augmentation is weak when the 
atmospheric lapse rate approaches the adiabatic lapse 
rate.  The adiabatic lapse rate for dry air is reported to be 
approximately -0.98o per 100 meters [23, 24]. Lapse rates 
greater than adiabatic (unstable condition) induce 
buoyancy which forces a displaced parcel of air to 
continue its motion.  On the other hand, during stable 
conditions, the lapse rate is smaller than adiabatic lapse 
rate, and a displaced parcel of air is forced to return to its 
original position. 
 
Thus, an unstable condition is expected to enhance 
diffusion, a stable condition tends to suppress mechanical 
diffusion, and a neutral condition has no contribution from 
thermal turbulence and dispersion is only caused by 
mechanical turbulence.  It is conventional practice to 
characterize atmospheric stability by use of the Richardson 
Number [25], Ri, which represents the ratio of the relative 
importance of buoyancy or convective turbulence to 
mechanical turbulence [26]. Alternatively, the bulk 
Richardson Number or Monin-Obukhov [27] length can be 
used to characterize atmospheric stability.  
 
Under extremely unstable conditions the enhancement of 
vertical diffusion is more pronounced, as mechanically 

displaced parcel of pollutant will continue its motion as a 
result of buoyancy.  This can be regarded as an elongated 
eddy, oval in shape with the major axis in z-direction.  In 
other words, presence of thermal eddies tends to increase 
the average dispersive time scale in the vertical direction.  
The effective or pseudo time scale for vertical dispersion 
is a function of the actual time scale and a stability 
parameter such as Monin-Obukhov length [27] or 
Richardson number [25].  Furthermore, for unstable 
conditions, the buoyancy effect is compounded with time 
such that thermal turbulent displacements keep 
multiplying with travel time.  Therefore, a pseudo 
dispersive time scale becomes a dynamic function of 
travel time.  For unstable conditions, it is therefore 
proposed that: 

z
L

T

tRi

Eff
z TeT L

Avg

∞=                     (18) 

where Eff
zT  is the effective dispersive time scale and 

AvgRi  is the average bulk Richardson number.  If 
buoyancy is the only additional factor involved in the 
vertical dispersion (consistent with our assumption D), 
then by using this effective dissipative time scale the final 
expression for the vertical dispersion coefficient under 
unstable conditions becomes: 
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For neutral conditions the Richardson number approaches 
zero which eliminates the extra exponential term and the 
equation reduces to the expression for the horizontal 
dispersion coefficient.  Stable conditions tend to suppress 
mechanical eddies.  This suppression would slow down 
the vertical eddies and reduce the magnitude of the 
dispersive time scale.  This situation can be visualized as 
an oval shaped eddy with minor axis in z-direction.  As a 
result of this shorten eddy, the dispersive time scales time 
scale for vertical direction would reduce.  However, the 
compounding effect of dispersion enhancement seen in 
unstable condition would not exist.  Therefore, dispersion 
under stable conditions can be modeled using the 
expression for horizontal dispersion and an appropriately 
adjusted time scale to account for the effect of thermal 
suppression. The equation vertical dispersion under neutral 
and stable conditions therefore becomes: 

z
L

T

t

k
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π
σ           (20)                 

 
6. Model Comparison with Atmospheric Data 
Vogt [28] compiled a list of generally accepted 
atmospheric dispersion experiments.  Most of the 
dispersion observations were made for a limited source 
receptor distance, while predictions for dispersion are 
required for distances that are orders of magnitude greater 
than those observed.  Because of limitations inherent in 
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the measurements, results of atmospheric dispersion 
experiments are often reported in form of an empirical 
correlation.  There are at least five such systems of 
empirical correlation [24] in use for estimating dispersion 
coefficients.  Experimental data is usually divided into six 
discrete categories based on the meteorological conditions 
as proposed by Pasquill [29].  Correlations proposed by 
Gifford [30], commonly known as Pasquill-Gifford curves 
(P-G curves) are most widely used world wide.  P-G 
curves are graphical representation of dispersion 
coefficient under various atmospheric stability conditions 
as a function of downwind distance.  While the model 
described in this paper relates the dispersion coefficients 
with travel time.  Distance to time dependency conversion 
was made using the average wind velocities [19].   
 
It has been suggested [31, 32, 33] that the integral time 
scale for atmospheric dispersion, ( y

LT ∞ ), is of the same 
order of magnitude as the reciprocal of the geostrophic 
frequency (i.e., the frequency of earth rotation). Their 
suggestion is logical, in that the time scale of earth rotation 
is the largest scale conceivable for atmospheric flow.  
Panofsky [8] has also expressed similar view by relating 
the depth of the Planetary Boundary Layer (PBL) with 
Coriolis parameter, f .  Thus, the dispersive time scale for 
the horizontal direction adopted in the present model is 
approximately 24 hours ~ 104 seconds.  A value for the 
average dissipative time scale, kT , for each stability class 
was determined by performing a linear regression of the 
proposed model predicted dispersion coefficients against 
the P-G curves, using the Marquardt-Levenberg algorithm.  
Based on this regression, best values for dissipative time 
scales were determined that would minimize the over error 
between the model prediction the experimental results.  
Best values for dispersive and dissipative time scales for 
horizontal dispersion coefficient under each stability class 
were obtained as shown in Table 1.   
 
 The assumption of isentropic turbulence at small scales 
requires that the vertical dissipative time scales under each 
stability class must be the same as their horizontal 
counterparts.  Therefore, horizontal dissipative time scales 
determined by regression were also used for the respective 
vertical dissipative time scales under various stability 
classes.  However, for vertical dispersion, it is 
unreasonable to use the reciprocal of geostrophic 
frequency as dispersive scales because the vertical 
dimension available for dispersion/mixing is quite 
different than the horizontal space.  Furthermore, under 
different stability conditions, the vertical length and time 
scales change depending on thermal stratification.  For that 
reason, use of a single value for the vertical dispersive 
time scale ( z

LT ∞ ) under all stability condition was also 
considered to be inappropriate.  Therefore, for vertical 
dispersion, the dispersive time scales ( z

LT ∞ ) under each 
stability condition were determined by regression.  
Likewise, an estimated value for the average bulk 
Richardson number was also determined for unstable 

conditions (i.e. Stability Class A & B).  These parameter 
values for vertical dispersion are listed in Table 1.  These 
values were used to predict dispersion coefficients under 
various stability classes. Predictions of dispersion 
coefficients generated by the proposed model with those 
from other well known correlations (including the P-G 
curves) are shown in Figures 1 and 2.   
 
7. Discussion of Results and Parameter Effect: 
 
Figures 1 illustrates that model predictions for the 
horizontal dispersion coefficients are within ± 20% of 
Gifford’s Random Force Theory [5] over nearly the entire 
range of interest for all six atmospheric stability classes.  
Error bars of ± 20% are added to the predicted results.  It 
is obvious that the model performs reasonably well for all 
stability classes.  However, the agreement is best for 
unstable atmospheric conditions, i.e., stability class A.  As 
the atmosphere becomes stable (classes E and F), the 
model begins to deviate from the empirical results.  As 
seen in the figure, inter-comparison of the various 
empirical correlations also starts to exhibit discrepancies 
for highly stable conditions.   
 
Somewhat of a poor model performance for highly stable 
condition is quite understandable, because the model 
described in this paper is based on penetration theory for 
computing mass transfer coefficients which is suitable for 
high turbulent conditions [12, 34].  It is believed that two-
film theory may be more appropriate for stable conditions. 
 
Figure 2 illustrates model predictions for vertical 
dispersion coefficients with error bars of ± 20% for all six 
atmospheric stability classes.  Model extension is based on 
the assumption that atmospheric turbulence is isentropic at 
small scales, therefore the dissipative time scale for 
vertical direction under a specific stability condition is 
identical to its horizontal counter part.  And 
gravity/buoyancy is the only additional factor influencing 
vertical dispersion, which is modeled by using an effective 
bulk Richardson number. 
 
The dispersive time scales for vertical dispersion are 
limited by the state of thermal stratification which depends 
on the stability conditions.  Therefore, dispersive time 
scale for each stability condition was determined by 
regression of the model expression against the P-G curves.  
With this phenomenological modification, the extended 
vertical dispersion model seems to perform quite well.   
 
Since the literature does not explicitly account for two 
independent time scales, it is difficult to compare the 
numerical values of the dissipative time scales used in the 
proposed model, however, our estimate for dissipative 
time scale in the range of 10-2 to 10-4 seconds, agrees 
with Nieuwstadt [10] and Panofsky [8] suggestion that the 
dissipative length scales in atmospheric flow is of the 
order of millimeters, and the corresponding time scales in 
the range of milliseconds.  Recently Hall et. al [35] 
experimentally estimated the rate of atmospheric energy 
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dissipation  to be in the range of 10 – 100 mW/kg ,which 
leads to an estimated dissipative time scale of 
approximately  10-4 seconds.  This estimate is in the same 
order of magnitude as that predicted by model regression 
against the empirical correlation. 
 
It is also interesting to notice the trend in the dissipative 
time scale, which starts with a small value for the most 
unstable condition (resulting in a maximum energy 
dissipation rate) and increases as the flow approaches the 
most stable condition for which energy dissipation is 
minimum.  Use of a single value for both horizontal and 
vertical dissipative time scales also supports the 
assumption of isentropic turbulence in atmospheric flow at 
small scales which also indirectly implies that the 
proposed model is a reasonable representation of 
atmospheric mixing phenomenon.  Moreover, the values 
for the average bulk Richardson number used in this study 
are close to the values reported by Schreurs and Mewis 
[36].   
 
For dispersive time scales, literature [37]  reported a wide 
variation.  For horizontal dispersion, the model uses a 
fixed value of 104 seconds for dispersive time scale as 
suggested by Gifford and co-workers [31, 32, 33].  This 
simple approach seems to perform very well.  However, 
for vertical dispersion additional complexity is introduced 
due to thermal stratification.  Recognizing the effect of 
thermal stratification in limiting the vertical length and 
time scales, a stability dependent dispersive time scale is 
determined for each stability class.  In general, vertical 
dispersive time scales are an order of magnitude smaller 
than their horizontal counter part.  This observation is 
supported by Draxler [26].  Moreover, there is a sharp 
decrease in the vertical dispersive time scales from neutral 
(stability C) to stable condition (stability class D) which is 
reported to be due to thermal suppression of turbulence in 
the atmosphere. 
 
A significant feature of the present model is that it 
contains molecular diffusivity in the expression for the 
turbulent dispersion coefficient, which suggests that even 
turbulent transport is dependent on the molecular 
characteristics of the mixture.  In view of the general 
agreement [3] that both molecular diffusion and turbulent 
mixing are manifestation of the same microscopic 
phenomenon i.e., molecular collision and scattering, the 
present development assumes that molecular and turbulent 
diffusion are closely related phenomena.  In fact, it can be 
shown that molecular diffusion is the limiting case of 
turbulent transport.  Starting with penetration theory’s 
mass transfer coefficient without time averaging; 
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The final result has an outstanding resemblance with 
equation (1), suggesting that for very small observation 
times, the observed dispersion is same as the molecular 
diffusion.  This feature of the proposed model, obviously 
need further investigation.   
 
8. Summary and Conclusions 
A new model for predicting transport of passive scalar has 
been developed which includes molecular diffusivity in 
the expression for the turbulent transport, establishing a 
relationship between molecular diffusion and turbulent 
transport.  The new model depends on only two 
coefficients, i.e., the dissipative time scale and dispersive 
time scale.  Dispersive time scale is associated with the 
largest conceivable wave (or eddy) in the flow and hence 
is determined primarily by flow geometry.  On the other 
hand, the dissipative time scales is related to the rate of 
energy dissipation and hence depends on the energy 
supply and the ability of eddies to cascade to smaller 
scales.  Use of these two independent times scales and 
their physical interpretation had reduces the inherent 
empiricism that exists in most of the current turbulent 
transport models.  For horizontal dispersion, the dispersive 
time scale is associated with the size of the largest possible 
eddy, the geostrophic frequency, which dependent on flow 
geometry.  Therefore, the model actually depends only on 
one empirical parameter which is associated with the rate 
of energy dissipation in the flow field. 
 
This model has a wide application in numerous areas of 
science and engineering and can readily be extended to 
heat transfer by using the thermal conductivity of the gas 
in place of diffusivity.  However, the two time scales will 
have to be determined to adequately represent the flow 
geometry and the state of turbulence. 
 
The proposed model when applied to atmospheric 
dispersion provides a plausible explanation for the 
observed slower dispersion of heavy gases [38] and 
suggests that the smaller molecular diffusivity of heavy 
gases may be responsible for their slower turbulent 
dispersion rates.  
 
Atmospheric horizontal dispersion coefficients were 
predicted for all six Pasquill Stability using the appropriate 
choice of model parameters.  With slight modification to 
account for the effect of buoyancy and/or gravity, the new 
model predicts vertical and horizontal dispersion 
coefficients that are in good agreement with empirical 
correlations.  
 Acknowledgement:  The authors would like to thank Dr. 
Joel Weisman, Prof. James Anno (Late), and Prof. John 
Christenson for their encouragement, advice and review of 
the manuscript. 
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Table 1. 
Model Parameters for Horizontal and Vertical Dispersion 

 
Horizontal 

  
Vertical Pasquill  

Stability Class 
Wind Velocity 

v(m sec-1)  
Y

kT  y
LT ∞  Z

kT  z
LT ∞  AvgRi  

A 2.8 3.16 10-4 1.00 104 3.16 10-4 5.41 103 11.6 

B 3.4 3.43 10-4  
- do - 3.43 10-4 2.37 103 1.0 

C 4.7 5.95 10-4  
- do - 5.95 10-4 4.11 103 N/A 

D 5.5 7.20 10-4  
- do - 7.20 10-4 7.16 102 N/A 

E 3.7 3.41 10-3  
- do - 3.41 10-3 9.01 102 N/A 

F 2.2 1.04 10-2 - do - 1.04 10-2 8.72 102 N/A 

 
Nomenclature 

 
Symbol Description Units Symbol Description Units 

Mσ  Molecular Dispersion 
Coefficient L )(τR  Autocorrelation function  

yσ  
Dispersion coefficient (i.e. 

2Y ) 
L t  Time (diffusion time or eddy exposure 

time for penetration theory) T 

zσ  
Dispersion coefficient (i.e. 

2Z ) 
L Eff

zT   
Effective dispersive time scale in 
vertical direction 

 

κ  Boltzmann’s Constant  KT  Dissipative time scale and eddy 
penetration exposure Time 

 

θ  Temperature 
oC or 
K LT  Lagrangian integral time scale 

 

ε  Rate of energy dissipation per 
unit mass L2 T-3 v  Velocity  

ν  Kinematic Viscosity L2 T-1    
τ  Lag time for correlation 

coefficient T    

ABD  Mutual diffusion coefficient of 
gases A & B L2 T-1    

)(kE  Energy spectrum in frequency 
domain     

k  Frequency  T-1    
K  Eddy diffusivity L2 T-1    
Ri  Richardson Number -    

AvgRi  average bulk Richardson number     

BulkRi  Bulk Richardson Number     
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FIGURE 1  

Comparison of Horizontal Dispersion Prediction 
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FIGURE 2  

Comparison of Vertical Dispersion Prediction 
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