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Abstract: - The problem is important for the practical applications in three aspects: 1. Excitation of parameter oscillations in continua in touch with necessity of intensification of various technological and technical processes: heat and mass transfer, mixing, decreasing of viscosity, improving of quality for crystallizating metal and many other phenomena. 2. Excitation of parameter oscillations in touch with nesessity of disintegration of jet and film flows: air spray, spray-coating, metal spraying, dispergation and granulation of materials (e.g. particles’ producing from molten metals), etc. 3. Suppression of parameter oscillations for stabilization of unstable regimes and processes: jet-drop and film screens for protection of diaphragm of experimental thermonuclear reactor, thermal instability and control of fusion reactor, control of electromechanical and electrochemical instabilities, combustion stability, decreasing of hydrodynamic and acoustic resistance, etc. In some cases, parametric control makes possible for not only intensification of processes but also for operation of the processes that are impossible without parametric control. 
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1   Introduction

Parametric excitation of oscillations (vibrations) is an excitation of oscillations (vibrations) in some system by temporal variation of one or several parameters of a system (mass, momentum of inertia, temperature, stiffness coefficient; for the fluids: pressure, viscosity, etc.). Thus, parametric oscillations are excited and maintained by parametric excitation. Examples of parametric oscillations are given as follows:

1. Oscillations of temperature in loaded elastic solid are able to evoke oscillations of its stiffness coefficient with the next its vibrations.

2. Oscillations of temperature (pressure) in fluid (gas) flow are able to evoke oscillations of its pressure (temperature) or (and) viscosity with the consequitive oscillations of other flow parameters.

3. External vibrations in fluid (gas) flow are able to evoke oscillations of its velocity with further oscillations of another parameters of flow.

4. Electric or magnetic fields are able to evoke oscillations in flow of conductive fluid producing the oscillations of other parameters, etc.
     The following attendant conceptions are useful for further analysis of the problem:

· Vibration: The motion of mechanical system by which though one generalized coordinate and (or) generalized velocity increase and decrease by turn in time. 
· Eciting force: Time alternating and independent from system state force causing the vibrations of this system.

· Force excitation: Excitation of mechanical system vibrations by exciting force.

· Kinematic excitation: Excitation of mechanical system vibrations by moving of some its points.

· Harmonic excitation: Forced or kinematic excitation of vibrations by harmonic
law.

· Autonomous oscillating (vibrating) system: Oscillating (vibrating) system by which energy source is absent or is its part.

· Self-excited system: Autonomous oscillating (vibrating) system that is able to do periodical oscillations (vibrations) exciting by energy receiving from nonoscillating (nonvibrating) source, which is regulated by evolution (motion) of the system itself. 
     Classification of the parametrical oscillations by the types of controlled objects and actions may be done as follows. The types of controlled objects could be considered as following:
· linear controlled object,

· non-linear controlled object,

· lumped-parameter controlled object,

· distributed-parameters controlled object,

· determinated/stohastic controlled object, 

· stationary/non-stationary controlled object,

· single-loop (multi-loop) controlled object,

· one-dimensional/multi-dimensional object, etc.

     The types of parametric actions could be:
· internal/external action,

· main parameter of the action (single-parameter action, multi-parameter action),

· feedback action and deviation action,

· analogue action and quantized action,

· impulse-time and impulse-amplitude action,

· periodic action and periodic amplitude action,

· frequency action and phase action,

· determinated and stohastic action, etc.

     Then classification of the parametric oscillations by the types of control is considered as:
· coordination; coordinating control,
· stabilization; stabilizing control (linear and nonlinear),

· extremal control and feedback control,

· disturbance control,

· autonomous control, etc.

     At first the parametric excitation of surface waves was studied [19] by M. Faraday (1831) who investigated that in vibrating tank with liquid the surface waves of double period of excitation relatively to external periodic action are excited. The theory of this phenomenon was developed later on [1,4-9,11-14,16-18] by N.N. Moiseev (1954), T.B. Benjamin, F. Ursel (1954), V.V. Bolotin (1956), V.I. Sorokin (1957), R. Skalak, M. Yarymovych (1962), R.H. Buchanan, C.L. Wong (1964), F.T. Dodge, D.D. Kana, H.N. Abramson (1965), R.P. Brand, W.L. Nyborg (1965), V.E. Zakharov (1968), G. Schmidt (1978), E. Hasegawa (1983), Y. Warisawa (1983), etc.
     The possibility to much increase an effectiveness for technological processes using the parametric oscillations was observed at first by D.K. Chernov [15] (1879) for crystallization. The phenomenon of crystal structure improving was investigated by R.F. Ganiev, V.F. Lapchinsky [21] (1978), etc. A lot of the problems on parametric wave excitation on liquid surfaces were investigated [20,21,28-37,39] with regard to stabilize the unstable states as:
· Rayleigh-Taylor instability,
· Kelvin-Helmholtz instability,

· Tonks-Frenkel instability,

· electrohydrodynamical instability, 

· various combinations of instabilities, etc.
     The common feature for all cases of parametric wave excitation on the boundary interfaces is perpetual sequence of unstable areas. For the wave excitation it is necessary that a periodic amplitude action exceeds some value which is critical for an unstable area [34,39]. The existence of such critical value is caused by an energy dissipation. Therefore an energy of an external action must exceed this energy of a dissipation in a system. By periodical excitation with a frequency ( the least of the critical values is at the oscillation frequency (/2, then at the oscillation frequency (, 3/2( and so on. Moreover from all unstable areas the most wide one is the area that corresponds to the oscillation frequency (/2. The other areas are too narrow and usually they are quite absent exept a big amplitude action. Therefore an instability of a first (ground) unstable area is often observed in experiments.
     Mathematical methods for the investigation of parametric oscillations are implemented both numerical (FEM, BEM, FDM), as well as analytical ones. Numerical methods have such an advantage that they fit to any complicated systems (for the linear as well as for the non-linear problems). But their disadvantages are: complicated interpretation of obtained results and distinguish the numerical and physical oscillatons; indistinct interconnection of parameters. Analytical methods applied to study parametric oscillations are: integral transformations, averaging of differential and integro-differential operators, factorization of differential operators, reductive perturbation method [2,3,38], fractional differentiation, etc. Their advantages are distinct parameter connection and interpretation of obtained results, good possibility to analyse obtained solution of the problem. The best results are got by implementation of all numerical and analytical methods in their best combination according to the task being solved.

2 Stability and stabilization of solidification front 
Cylindrical channel is considered, which wall in general case consists of the N layers of different materials. On the internal wall surface is thin solid sheet of the material that flows in channel in liquid state (Fig. 1). This thin solid sheet named garnissage sometimes is forming naturally (e.g. in metallurgical aggregates) and breaks the normal technological regimes because of solid overgrowning the channel cross-section. But if the garnissage is controlled, it suits perfect for the wall protection. As far as a solid sheet and a flowing liquid represent the two phases of the same material, the control system redoes garnissage locally in case of its partial destroying (due to shear stresses in the flow and interaction with agressive high-temperature flow). The controlled heat flux system allows dynamical maintaining of a garnissage interacting with each and every mode of perturbation in the system. 
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Fig.1. Flow in cylindrical channel with solidification on the wall and heat flux control system.

     In an effort to raise the effectiveness and specific capacity of metallurgical electric welding and various other devices the engineers are faced with the problem of overcoming the instability of phase transition boundaries, or vise versa, destroying these boundaries, etc. For example, at one time it was suggested that the walls of metallurgical aggregate machine be protected  against thermal, chemical and other destructive effects through a maintaining of a thermal regime of the walls that would make the surface melt produce a thin layer of solid phase. This layer could then constantly be renewed when worn out, thus reliably protecting the walls of such an aggregate machine against destruction. Besides, in the presence of more exacting melt purity requirements this problem could be solved simultaneously, since while  being torn off the walls and acquiring liquid form, particles of that same substance would not alter the melt’s composition. However, this outwardly unsophisticad multifunctional anti-destructive fettling technique proves difficult to introduce in daily practice. The main obstacle is the need to automatically control and keep the form of the solidified front within the present parameters.
     In metallurgical aggregate machines, natural garnissage more often than not produces negative effects, hindering the machine’s effective operation, causing overgrowth within the channels, and bringing forth other unwelcome phenomena. Therefore the key task was to study the instability of the solidified front and the possibilities of controlling, stabilizing or destroying the phase-transition boundaries. The first possibility would be important in solving the problem of fettling protection with the aid of automatically stabilized, artificial garnissage. The second possibility would be instrumental in combating natural garnissage hindering as it does the metallurgical process.
2.1 Parametric oscillations of cylindrical solidified front and its control 
The theory of parametric oscillations in flat and cylindrical solidified fronts and their control by means of electromagnetic high-frequency fields and heat influx regulators is dealing with linear small-amplitude perturbations. As for the non-linear occurences, these haven’t been studied well enough, to say the least. Problems on stability and stabilization involving unstable phase transition boundaries were studied here in regard to influence of many factors simulating various real physical systems. For example, such complications are caused by multilayer composition of the wall of a channel, aggregate machines; convection; change and regular perturbations in the thermodynamic medium, melt viscosity, current regime, etc.
2.2 Mathematical model of the system

Schematically represented, any given system can be illustrated in a simplified way as shown in Fig. 1. In controlling a phase transition boundary with the aid of an automatic heat flux regulator, the parameters of  the reguating system’s effects are programmed at the boundary line with the regulator. The latter is then considered to be hooked onto a powerful energy source, so that here the reverse effects of the object can be ignored. As for the solidified front, it is supposed to be a surface having constant temperature, whereas the phase transition stage is allegedly “zero thin”. In other words, the transition from the liquid to the solid phase is a “leaping” process occuring at the phase transition boundary lines. 

     In using heat flux regulators, considering that the perturbation boundaries of the solidified front lead to disturbances in the magnetic field, with the concurrent alterations in the winding electric current which, amplified in the thin skin-layer close to the interface, and which suppresses or reinforces the relevant perturbation by Joule heat release, then we arrive at the only logic conclusion: 
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where m,k is the value denoting the harmonic number (wave number as per circumferential and longitudinal coordinates); T is the temperature; n is the phase distribution surface normal vector; Gm,k is the control system’s feed-back factor. The Gm,k value may vary on a large scope, in that it can be altered constructively, so that it is possible to select a value of the factor Gm,k for energy harmonic reading, necessary in solving the given problem. 
     In an axial symmetry, the mathematical model of a system for perturbations in a linear approach is
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where j=1,2, 

={u1,v1,w1}(r)u0expi(kx+m

-(t), p1, (1- perturbations of the velocity, pressure and temperature of a fluid. Index 2 corresponds to the parameters of a solid phase. The perturbation of a boundary of the solidified front is modeled as

               r=R[1+( expi(kx+m

-(t)]. 
Here T is the temperature of undisturbed system; (j, cj are density and specific heat of j-th phase (j=1 - liquid, j=2- solid, from j=3 - wall layers as shown in the Fig.1). Boundary conditions are stated as:

1) from the symmetry assumption:  
        r=0,      u1=0,        (1=0;  

               (3)

2) on the perturbed boundary of solidified front         r=R[1+ ( expi(kx+m

-(t)]:

(j(R,(,x)+R(((Tj/(r)r=Rexpi(kx+m(-(t)=0, j=1,2 (4)

        r=R,   u1=(1-(2/1)(r/(t,                                    (5)

                (2((2/(r=(1((1/(r+(2(21(r/(t;
     

where (2/1=(2/(1, (r/(t is velocity of solidification front (movement of the boundary due to solidification-melting on it), (21 is the heat of phase change (solidification);

3) on the wall surface (r=R+r0), the impedance condition (1) is stated.

2.3 Instability and stabilization of the solidification front 

The system of partial differential equations (2) with the boundary conditions (1), (3)-(5) was solved for the perturbation’s amplitudes using of asymptotical decompositions by small parameter (=i(. The solution is following (in a zero approach by the eigen values):
(=1/R({k(01[I’m((10)/Im((10)(1-iPe/(ka21))1/2+        (6)
(A1Bik,m+A2k)/(A3Bik,m+A4k)]+Pe/a21((T1/(x)r=1},

where (01 =-((T1/(r)r=1>0, R(=(2(21/((1*c1*T*) is the ratio of melting/solidifying heat to a heat capacity on the interface, Pe=u0R/a21- the Peclet number, a21=k1/((1c1),  (10=k2-ikPe/a21, a21=a21/a21*. Bik,m=Gm,kR/kN means the modified Bio criteria coinciding with the regular Bio number, in the absence of a heat flux regulating system. k1 is the thermal conduction coefficient in regard to the liquid, kN is the thermal conduction coefficient in regard to the wall secreting the control shell, i=(-1, k,m- are the wave numbers in the x and ( directions correspondently (in cylindrical coordinate system: r, (, x).  In liquid is immovable in a stable state, then it is the following:
(=kJa/lns0[(A1Bik,m+A2k)/(A3Bik,m+A4k)+A5/A6],(7)
where s0 is the dimensionless thickness of the preaxle layer with stable temperature, s0=R0/R, Ja=(K(2/1)-1 is the Jacob number characterizing phase transition thermal indices, and those of liquid surplus heat output, as per solidifying temperature. K is the Kutateladze number: K=(21/(c1*T*). Here are:

A1=Km(ks)I’m(k)-K’m(k)Im(ks)>0,     A2=K’m(ks)I’m(k)-K’m(k)I’m(ks)>0,
A3=Km(k)Im(ks)-Km(ks)Im(k)>0,
               (8)
A4=Km(k)I’m(ks)-K’m(ks)Im(k)>0,

A5=K’m(k)Im(ks0)-Km(ks0)I’m(k)<0,
A6=Im(ks0)Km(k)-Km(ks0)Im(k)<0,

where Im, Km are the modified Bessel and Hankel functions, s=r0/R. The stroke indicates the derivative of corresponding function. These terms (6), (7) with conditions (8) make possible to calculate the m,k wave number pairs in conformity with the stable ( re(>0 ), unstable ( re(<0 ), neutral ( re(=0 ) system perturbations. The intrinsic values of Aj (j=1-6) are expressed through the modified Bessel and Hankel functions. Every type of such perturbations providing for appropriate heat flux control system yielding the desired effect in each given case, e.g., suppression/stabilizing system; excitement of oscillations (destroying solidified front boundary lines). In different physical situations the terms under which garnissage stability and/or stabilization was achieved proved similar to those registered by our works. Here one had to reckon with a number of real factors (e.g. viscosity, heat convection, multilayer walls, non-linearity of the process, etc.). This made possible correct estimation of the effects of different factors and calculate the “optimal” parameters from a standpoint of stability, or (vice versa) of the solidified front of the relevant applied systems. Thus, by taking into consideration the melt viscosity indices, one can achieve a slight increase in the threshold stability count, at the expense of losses in perturbation dissipation energy. By properly selecting the properties of multilyer fettling materials it is possible to suppress a number of harmonic modes (e.g., thermodynamic distributed damper). 

     The results thus obtained were used in computer-simulated experiments which revealed a number of regularities in the stability and stabilization of garnissage in cylindrical aggregate machines:

- in slight forced convection, long-wave perturbations at phase transition boundaries cause disturbances in the system’s parameters over the entire region having the same order, whereas the short-wave ones tend to attenuate close to the boundary line;

- in Peclet number Pe>>1, the linear theory produces resonant perturbations with a frequency of (=kPe;

- there is a sharp increase in the Bi*k,m critical values with reductions in the thickness of the garnissage layer;

- in a big Peclet numbers and small garnissage layer thickness values, those of Bi*k,m are also big and the automatic regulation system is difficult to adjust to the programmed “moods”;

- with Pe>>k, short-wave garnissage disturbances can also gain in time, provided the garnissage layer does not go beyond the critical mark: s<<1+1/k, where s is the layer’s dimensionless thickness in regard to the radius of the undisturbed liquid zone. 
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Fig. 2. Modified Bio numbers depending on wave numbers and garnissage thickness.

     The calculated parameters correspond to a number of practical systems for various metals and automatic heat flux regulating systems. These systems are made to stabilize unstable artificial garnissage regimes (e.g., fettling protection and production of pure materials) and to destroy natural garnissage (means of combating “overgrowth” in the channels of metallurgical aggregate machines and breaches of the metallurgical regime). Such system boast high efficiency, are ecologically “clean” and economic in term of use of resources. The results of numerical simulation given in Fig. 2 have shown that the modified Bio numbers required for stabilization of the unstable modes of perturbations group by value of the dimensionless garnissage thickness. The wave number m by circular coordinate increase stability (decrease the critical Bio number).

3 New phenomena on parametric film flow control and their application
Control of a film flow decay (dispersion) by parametric excitation (electromagnetic, vibrational, etc.) is an actual problem of the modern industry having a wide application for injectors, chemical and other reactors, metallurgical devices. Another problem - dumping of perturbations of a free film surface (stabilization of film flow) is directly opposite to the previous one. And the third case: the excitation and keeping of special wave regimes of film flow which are suitable from the point of view of mass- and heat exchange processes.

     The film devices are distinguished by simplicity, presence of developed specific surface of a liquid and as a result of which - high intensity of running processes. That is why they considerably surpass the traditional devices with working liquid body and appear ecologically pure. Many high-efficiency and ecologically pure processes and devices for the cleaning, degazation, heat withdrawal, heat- and mass-transport etc. can be constructed on the basis of film flows.
     The theories of liquid films have been inculcated. The theory of parametric excitation and dumping of oscillations, its application especially for the case of quickly spreading films on the rigid surface has been studying from the beginning of the 80-th years. The results obtained allowed designing and successful testing the new prospective granulators of metals and some other devices as well. Investigations of non-linear wave processes in film flows [23-27] showed the three new phenomena of a film flow decay:
· electromagnetic parametric resonance;
· vibrating solitons decay;

· vibrating shock-wave decay.

In the first case moving liquid film can be broken down in a drops of the given size depending on frequency of parametric excitation (e.g. alternating electromagnetic field), with comparatively low energy consumption. In the second case the system of solitons is excited and the solitons throw off drops as unit jets in the phase of modulation. The third case is a shock wave, it displays with excess of critical vibrating Euler’s number (10-100 depending on the parameters of the system) and is realized very simply: when the base vibrates with given frequency and vibrating Euler’s number excides the critical value.

3.1 Film flow parametric control


[image: image6.wmf]
Fig. 3. Electromagnetic control for film flow.

     The radially spreading film flow is forming as a result of a vertical jet flow blowing on a horizontal plate. The problem on parametric wave excitation and suppression in film flow affected by a progressive electromagnetic wave (see Fig. 3) of the following type:

          h=hm(z,r)expi(kr+m(-(t),
                         (9)

is considered, where k,m are the corresponding wave numbers by coordinates r, ( and ( is frequency of an electromagnetic field, h is the vertical component of magnetic field strength, hm is the strength amplitude.

     The other parametric oscillatons in film flow was considered for the case of vertical harmonic vibration of the horizontal plate:


d2z/dt2=gvcos(t,

          (10)

where gv  is acceleration due to vibration, ( is frequency of vibration.

3.2 Mathematical model 

The mathematical models for these two cases of parametric excitation (9), (10) were considered separately as well as together. The general case of axisymmetrical film flow is described with the following dimensionless system of equations:

((/(t+1/r((/(r+1/r(q/(r=0, 

1/r(q/(t+(/(r(q/r2)+(/2((/(t[(u+(/(r(((/(t

+1/r((/(r)]+(((/(r(1/Fr2-Eugcos(t)+            (11)
+2(Alhm(hm/(r+1/Re[3(u+4(/(r(((/(t+
+1/r((/(r)]-(/We(Kc/(r =0,

(h/(t+1/r(h/(r=1/Rem((2h/(r2+1/r2(2h/((2
+1/r(h/(r),



          (12)

where are:






Kc={(2(/(r2+1/r((/(r[1+(((/(r)2]}/[1+(((/(r)2]3/2,  q=

urdz,  (u=((u/(z)z=0, Eug=gva/u20- vibrating Euler’s number, a- thickness of undisturbed film, u0- velocity of vertical jet (characteristic velocity of a film flow), (- dimensionless perturbation of the film surface, Fr=ga/u20 Froude’s number, We=au20/( - Weber’s number, (- surface tightness coefficient, Al=(mh2m/((1u20)- Alphven’s number, Re=u0a/(- Reynolds’s number, Rem=u0a/(m - magnetic Reynolds’s number.

     The equation array (11) was obtained by the integration of the film flow equations with correspondent boundary conditions across the film.

3.3 Solution of the problem
In case of vibrating wave excitation in film flow the approximate solution of equation array (11) was obtained following:

     (=Bexp(r-1+Eug/(sin(t-t/Fr2),
          (13)
where B is a constant that was determined by the experiments.

     In a flat case, a similar to the equation array (11), (12) dimensionless equation array was:
(q/(t+(q/(x+0,5((2(/(t(x+(2(/(x2-(u)(((/(t
+(/Fr2((/(x+3/Re((2(/(t(x+(2(/(x2-(u)+2Al
[image: image7.wmf]·
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(h(h/(x-(/We(/(x{(2(/(x2[1+(((/(x)2]-1.5}=0,
   

((/(t+((/(x+(q/(x=0,                                       (14)
(h/(t+(h/(x=1/Rem(2h/(x2;

where q=

udz is. The equation array (14) was solved by the reductive perturbation method. First it was reducted to the following matrix form:
(U/(t+A(U)(U/(x+C(U)(2U/(x2+B(U)=0,       (15)
where: U=[h, q, (, (h/(t, (q/(t, ((/(t, (h/(x, (q/(x, ((/(x, (2(/(x(t, (2(/(x2]T, and the matrices A, C are 11 by 11. The nonzero elements of the vectors and matrices are the following ones:
b1=-(h/(t,    b2=-(q/(t,    b3=-((/(t, 
b5=(u/2[((/(t((q/(x+((/(x)+((2(/(x(t+2Al(h/(x

[image: image9.wmf]·

((2h/(t(x+(2h/(x(t)+(((2(/(x(t+((/(x((/(t)/Fr2
+3((2(/(x2)2{[1+(((/(x)2]-5/2/We}{((/(t((/(x+
+((2(/(x(t-5((2(/(x(t(((/(x)2/[1+(((/(x)2]};

b9 = -(2(/(x(t;    a4,1 = 1;    a5,4 = 2Al(h/(x; 
a5,5 = 0,5(((u-(2(/(x(t-(2(/(x2)+1;   c4,4 = -1/Rem;
a5,8 = 0,5[((/(t((q/(x+((/(x)+((2(/(x(t];    
a6,5 = a6,6=1;    a7,4 = a8,5 = a11,10 = -1;

a5,10 = 6(((/(x(2(/(x2[1+(((/(x)2]-5/2/We;   
a5,11 = {3((((/(x(2(/(x(t-((/(t[1+(((/(x)2]}[1+
       +(((/(x)2]-5/2/We; c5,5=0,5(((q/(x+((/(x)-3/Re;   c5,10=-([1+(((/(x)2]-3/2/We;   c10,5 = c10,6 = 1.

3.4 Solution of the evolutionary equation.

The solution of the obtained standard evolutionary equaton (14) was found in the form [6,7]:

                              U=

(U((),

where are: (=o(1), U(()=

Ul(()((,()expil(kx-(t);  (=((x-vgt);  ((1;  (=(2(t); U1(1)=R(;   W1R=0;   LW1=0;   W1=((-il(I+ilkA(0)+(B(0)+l2k2C(0)((;

U0=const - undisturbed solution of matrix equation (15); A(0)=A(U)  by U=U0; ((B(0))j,k=((Bj/(Uk) by U=U0;  U~expi(kx-(t);  vg=((/(k- the group wave velocity. Here (,( are the “slow-acting” (“compressed”) variables introduced by Gardner-Morikawa procedure (Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., 1967;  Gardner C.S., Morikawa G.M., 1969) [22].

     Taking into accout all above-mentioned it is possible to write for the fundamental harmonic the following equation (Whitham G.B., 1974):
i((/(t+0,5((2(/(k2)(2(/((2+((((2(-((=0.     (16)
There is taken an assumption that the fundamental harmonic in considered time interval is dominant and mode’s interaction can be neglected. The coefficients in equation (16) are:
(=C/(LR(;     C=CA+CB+CC;  
CA=ikL{2((A(0)R*)R2(2)-((A(0)R2(2))R*+

+((A(0)R0(2))R+(((A(0):RR*)R-0,5(((A(0):RR)R*};          CB=L{(((B(0)(RR0(2)+ 

+R*R2(2))+0,5(((B(0):RR*R};    
CC=-k2L{((C(0)R2(2))R+((C(0)R0(2))R+(((C(0):
R*R)R+0,5(((C(0):RR)R*+4((C(0)R*)R2(2)}; 
(=-d/(LR(;        d=L{ikA’(0)+(B’(0)-k2C’(0)};   
R0(2)=-{ik[((A(0)R*)R+c.c.]+0,5(((B(0)RR*+c.c.)-
         -k2[((C(0)R*)R+c.c.]}/((W0((;    
R2(2)=-{ik((A(0)R)R+0,5((B(0)RRk2((C(0)R)R}/
((W2((;    (A(0)U(1)=Uj(1)((A/(Uj)    by U=U0; 
((A(0)U(1)U(1)=Uj(1)Uk(1)((2A/(Uj(Uk) by U=U0;   ((W0((= detW0; ((W2((=detW2;

(((A(0)U(1)U(1)U(1)=Uj(1)Uk(1)Um(1)((3A/(Uj(Uk
(Um) by U=U0;   c.c.- complex-conjugated.

     Here are: (=(r+i(i; (=(r+i(i; the complex-conjugated values are sighned with star. For the A, B, C, ( the asymptotic decompositions by order of (2 were used. Thus, a rapid wave expi(kx-(t) has an amplitude multiplier satisfying the non-linear Schr(dinger equation (16) with dissipation, which has soliton-like solutions. The soliton-like wave amplitude is filled with the rapid oscillations. 

     The solution of the equation (16) for each harmonic having its own equation according to ( (second term in (16)) can be found in the form (=(expi((+kb(), where 2(/kb is a wave length for the amplitude-solution (big wave). Then the following solution is obtained by (i(0:

((j)={(r(j)[(((j)]2-0,5((2((j)/(k2)k(j)(k(j))2+(r(j)}(+2(n; 
k(j)=kb(j);
[(((j)]2=((i/(i([1(exp(-2(i()]-1; 
(<(((i/(i((+),       (>(((i/(i((-);     n

N.
     The obtained approximate expression (17) allows analyzing stability of excited non-linear waves. Instability is available by (i>0, by (i>0 the film is stable. But in a non-linear case critical value must be estimated because these stability conditions are only necessary, and not sufficient ones. For the stability of the excited soliton-like waves the critical value of an excitation should be exceeded. In the case considered, this critical value is (cr=(((i/(i(. By (i<0, (i<0, the stability of a soliton-like wave depends on an initial amplitude (2 (((-(). For the (q,()=R[(]expi(kx-(t)+c.c. there is q2=(2exp2i(kx-(t)+2(((2+c.c. Then in case of (u=0 (nonmoistend surface) it is obtained dispersive appropriate correlation:
((-k)2+3i/Rek2((-k)+{k4((-k)3[((-k)2+4k4(((2]}/
{We[2k4(((2-((-k)2]5/2}+2iAlkh(h/(x-k2/Fr2=0, (m=(km(im/Rem-1).


          (18)
For (2k2(((<<((-k(, the correlation (18) is simplified:
((-k)2+3i/Rek2((-k)-k4/We[1+9k4(((2/((-k)2+
30k8(((4/((-k)4]+2iAlkh(h/(x-k2/Fr2=0.
For the (=((x-vgjt), (=(2t, from equation (16) yields

      i(((j)/(((j)+0,5(vgj/(k(2((j)/(((j)2+
        ((j/((((j)(2(((j)(2((j)-((j)((j)=0.     
The critical values for the non-linear wave excitation are:
(((j)cr(=[2We+Fr2(kb(j))2]{Re2[2We+Fr2(kb(j))2]2+
          +9We2Fr2(kb(j))2}1/2/[6(2ReFr2We3/2(kb(j))2];
q(j)cr=[2We+Fr2(kb(j))2]{We[4(1/Fr+0,5Fr(kb(j))2/
         We)2+9(kb(j))2/Re2]}1/2/[6(2FrWe(kb(j))2];
     
((j)cr=q(j)cr[kb(j)/((j-kb(j))].
For Re>>1 the dissipation effects are negligibly small, therefore the non-linear Schr(dinger equation (16) has solitary solutions when ((j)(0  by(((j)(((:
((j)=[-2A(j)/(r(j)]1/2sech{[-0,5((2(j/(k2)/A(j)]-1/2((j)}
exp(-iA(j)((j)),    A(j)=-0,5(r(j)[(0(j)]2,
where (0(j) is the value of ((j) by (=0, ((j)=0. The solitary wave’s width is 

           (s(j)=[((2(j/(k2)/((r(j)(0(j))]1/2,   
where As(j)=(0(j)  is the wave’s amplitude and vs(j)=(2(j/(k2  is its velocity. The non-linear addend to the solitary wave’s frequency is the next ((s=0,5(r(j)((0(j))2. An electromagnetic modulation in a linear approach gives:
(=k-1.5ik2/Re({k2(1/Fr2-,25k2/Re2+k2/We)+2ik
[image: image10.wmf]·
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kmAl[h0+2hmcos(kmx-(mt)][2hmsin(kmx-(mt)]}1/2.
Moreover, the soliton-like excitation for a film flow requests also the Lighthill’s condition:
     We(k+1)(1+k2Fr2/We)>k4Fr2, 
          (19)
that is a limitation on minus-plus signes of the coefficients by a terms (2(/((2 and a non-linear term of a standard evolutionary equation. As follows from (19), this criteria be easier to satisfy by small value of k. The calculations showed the next critical parameters:
((s(cr=3*10-2 -  in general case;
((s(cr=3*10-3 -   by k>>1 (short-wave solitons);
((s(cr=10-6-10-8 - by k<<1 (long-wave solitons).

A number of different linear, as well as non-linear modeling situations were considered. As a result there were obtained some interesting regularities of parametric wave excitation and suppression in film flows including the three new phenomena of parametric film decay: resonance decay, soliton-like decay and shock-wave decay. Based on these new phenomena, the prospective dipergators and granulators were developed, created and tested for some metals and other materials.  

4   Conclusions

The new phenomena on parametric control in film flows and channel flows with solidifying on a wall were revealed. Except theoretical importance, they were proven as highly important for industrial and other applications.
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