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Abstract: - Stability of shallow flows is analyzed in the present paper. Momentum correction coefficients are 
introduced in the shallow water equations in order to take into account non-uniformity of the velocity 
distribution in the vertical direction. Linear stability of parallel base flow is governed by the modified 
Rayleigh equation. Methods of weakly nonlinear theory are used in order to derive the amplitude evolution 
equation for the most unstable mode. It is shown that the evolution equation is the complex Ginzburg-Landau 
equation. 
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1   Introduction 
Depth-averaged equations (the Saint-Venant 
equations) are often used to model large-scale 
turbulent motions in shallow water [1]. These 
equations are used when the transverse length scale 
of the flow is much larger than water depth. Shallow 
water equations have been recently used for linear 
stability analyses of transverse turbulent motions in 
shallow waters [2]-[8]. Experimental and theoretical 
analyses in [2]-[8] show that the development of 
instability in shallow water is different from the case 
of deep water. Bottom friction in shallow flows acts 
as a suppression mechanism of the transverse 
growth of perturbations. In addition, development of 
three-dimensional instabilities is prevented due to 
limited water depth. 
     One of the main assumptions in shallow water 
theory is the independence of the flow 
characteristics from the vertical coordinate since 
shallow water equations are depth-averaged 
equations. There are many cases, however, where 
this assumption is not valid. Changes in flow 
geometry, flow regimes or roughness of the bottom 
boundary can lead to large deviations from the 
above assumptions [9]. Averaging coefficients 
(momentum and pressure corrections coefficients) 
are introduced in [10]-[11] in order to take into 
account the non-uniformity of the velocity 
distribution in the vertical direction.   
     The linear stability theory can only predict when 
a particular flow becomes unstable. In particular, the 
critical values of the stability parameters (critical 
Reynolds number for viscous flows or critical bed 

friction number for shallow flows) can be calculated 
by means of the linear stability theory. However, the 
evolution of the unstable disturbance above the 
threshold cannot be predicted by the linear theory. 
Weakly nonlinear theories [12]-[13] are used to take 
into account the effect of nonlinearities analytically 
in the unstable region where the parameters are very 
close to the critical values. As a result, an amplitude 
evolution equation for the most unstable mode is 
derived. In particular, the methods of weakly 
nonlinear theory are used in [8] to derive the 
complex Ginzburg-Landau equation which can be 
used to describe the dynamics of shallow flows 
behind obstacles (such as islands) above the 
threshold.  
     Previous studies [14] indicated that the stability 
characteristics of shallow flows are quite sensitive to 
the relative magnitude of the averaging coefficients. 
In particular, it is shown that the averaging 
coefficients have significant impact on the stability 
domains of transverse flows in compound channels.  
     The present paper is devoted to weakly nonlinear 
stability analysis of shallow flows where the 
averaging coefficients are taken into account. The 
amplitude evolution equation is derived under the 
assumption that the bed friction number is slightly 
below the critical value. It is shown that the 
resulting equation has complex coefficients and is of 
Ginzburg-Landau type. Thus, the Ginzburg-Landau 
model may be used to analyze the dynamics of 
shallow flows in a weakly nonlinear regime.  
 
 



 
 
2   Problem Formulation 
The governing equations under the rigid-lid 
assumption are [10]: 
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where x and are the spatial coordinates, is the 
time, and are the depth-averaged velocity 
components in the 

y
v

t
u

x and directions, respectively, y
p is the pressure, is water depth, is the friction 

coefficient, 

h

2

fc

1 ,ββ and 3β are the momentum 
correction coefficients. Note that the bottom shear 
stress is modeled by means of the Chezy formula. It 
is also assumed here that the coefficients 21 ,ββ and 

3β are independent on the spatial coordinates x and 
. y

     Introducing the stream function ),,( tyxψ by the 
relations 

yu ψ= , xv ψ−=  
and eliminating the pressure p we rewrite (1)-(3) in 
the form 
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where is the Laplacian in two dimensions and the 
subscripts indicate the derivatives with respect to the 
variables 

∆

x and . Methods of weakly nonlinear 
theory are used in the next section to derive an 
amplitude evolution equation for the most unstable 
mode. 

y

 
 

3   Derivation of the Ginzburg-Landau 
equation 
Suppose that the base flow  
r

)0),(( yUU =                                                        (5) 
is perturbed, and the perturbed solution to (4) is 
assumed to be of the form 
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where ε  is a small parameter and Uy =0ψ . 
Substituting (5) and (6) into (4) and linearizing the 
resulting equation in the neighborhood of the base 
flow (5) we obtain  

01 =ψL                                                                (7) 
where is the following linear operator: L
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     The perturbed component of the stream function 
is sought in the form 

..)](exp[)(),,( 11 ccctxikytyx +−= ϕψ            (9) 
where c.c means “complex conjugate”. Substituting 
(9) into (7) we obtain the linearized stability 
equation (the modified Rayleigh equation) in the 
form 
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The boundary conditions are 
.0)(1 =±∞ϕ                                                        (11) 

      Problem (10)-(11) is an eigenvalue problem. The 
eigenvalues, ,imrmm iccc +=  ,...2,1=m , 
determine the linear stability of the base flow (5). 
This base flow is said to be linearly stable if 

0<imc for all and linearly unstable if c at 
least for one value of . Numerical methods [6] 
can be used to find the critical values of the 
parameter which is defined as follows. The set of 

all points in the -plane for which one 

eigenvalue satisfies the condition c while all 

m 0>im

0

m

),( fck
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other eigenvalues have negative imaginary parts 
defines the neutral stability curve, . The 

critical value, c , of the parameter is defined as 
follows: 
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     Stewartson and Stuart [12] developed a weakly 
nonlinear theory for stability of plane Poiseuille 
flow where the effect of nonlinearities can be taken 
into account analytically. The main idea behind the 
weakly nonlinear theory is the following. Consider 
the point in the parameter space where ck= , 

and . Here the subscripts and the 
superscript indicates the critical values of the 
parameters. Suppose that the stability parameter 

is slightly below the critical value , namely,  
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In accordance with the linear stability theory the 
most unstable mode is given by (9) where the 
function (1ϕ is the eigenfunction of the linear 
stability problem (10)-(11) calculated at ck= , 

and . Since the problem is linear, ccc =
)(1 y

)(c
fc

ϕ can be replaced by )(1 yCϕ , where C is an 
arbitrary constant which cannot be determined from 
the linear stability theory. Following Stewartson and 
Stuart [12] we restrict ourselves to the conditions 
around the critical point in order to study the 
nonlinear evolution of the most unstable mode. The 
constant is replaced by a slowly varying function 
of the spatial coordinate and time. Thus, we 
introduce slow time 

C

τ and stretched longitudinal 
coordinate ξ which moves with a group velocity 

: gc
,2tετ =   )tcg−=ξ . 

It follows from the chain rule that 
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Thus, the differential operators and ∂ / x∂ are 
replaced by 
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The function 1ψ in (9) is sought in the form 
ccctxikyA c .)](exp[)(),( 11 +−= ϕτξψ        (16) 

where is the wave speed at , and 
is a slowly varying amplitude.  

c ckk = )(c
ff cc =

A
     In order to find the equation which governs the 
evolution of the most unstable mode we consider 
higher terms of the perturbation expansion (6). 
Substituting (6) and (14)-(16) into (4) and collecting 
the terms of order ε , we recover equation (7), 
where the operator is defined by (8). Collecting 
the terms of order gives 
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Collecting the terms of order we obtain 3ε
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where 
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The form of the right-hand side of (17) and (18) 
suggests that the function 2ψ should be sought in the 
form 
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Substituting (16) for 1ψ and (20) for 2ψ into (17) 
and collecting the terms proportional to we 
obtain 
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with the boundary conditions 

.0)()0(
2 =±∞ϕ                                                      (22) 

Collecting the terms proportional to  
)](exp[ ctxikA −ξ gives 
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with the boundary conditions  

.0)()1(
2 =±∞ϕ                                               (24) 

Finally, collecting the terms proportional to  
)](2exp[2 ctxikA − yields 
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with the boundary conditions  

.0)()2(
2 =±∞ϕ                                             (26) 

   Note that equation (23) is resonantly forced since 
the corresponding homogeneous equation has a 
nontrivial solution if ckk = , and . 
Thus, in accordance with the Fredholm’s alternative 
[15] equation (23) has a solution if and only if its 
right-hand side is orthogonal to all eigenfunctions of 
the corresponding homogeneous adjoint problem. 
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We define the adjoint operator, , and adjoint 
eigenfucntion of as follows: 
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Since 1ϕ is an eigenfunction of the problem (23), 
(24), then the left-hand side of (27) is equal to zero. 
This also means that  

01 =aaL ϕ                                                     (28) 
The boundary conditions are 

0)(1 =±∞aϕ                                                 (29) 
The explicit form of the adjoint operator is obtained 
by integrating equation (10) by parts and using 
boundary conditions (11): 
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Note that the eigenvalues of problems (10), (11) and 
(28), (29) coincide.  
     The solvability condition for equation (23) has 
the form 
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Equation (30) determines the group velocity . gc
     The evolution equation for is obtained from 
the solvability condition for equation (18). It is clear 
that (18) has a solution if and only if the right-hand 
side of (18) is orthogonal to all eigenfunctions of 
the adjoint problem (28), (29). It can be shown that 
the solvability condition for equation (18) is 
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where the complex coefficients σ , δ and µ of (31) 
are expressed in terms of integrals involving the 

functions 1ϕ , , , , and their 
derivatives with respect to and are not presented 
here. Equation (31) is the Ginzburg-Landau 
equation. In order to evaluate the coefficients of the 
Ginzburg-Landau equation one needs to calculate 
the critical values of the parameters k , and 

from the solution of the linear stability problem 

(10), (11), find the eigenfunction 
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(10), (11), calculate the eigenfunction of the 
adjoint problem (28), (29), solve three linear 
boundary value problems (21)-(26) and evaluate the 
integrals. 
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4   Conclusion 
The complex Ginzburg-Landau equation for the 
evolution of the most unstable mode is derived in 
the present paper. The governing equations are the 
shallow water equations where the averaging 
coefficients are used in order to take into account 
non-uniformity of the velocity distribution in the 
vertical direction. The complex Ginzburg-Landau 
equation is much simpler than the original nonlinear 
shallow water equations. On the other hand, it is 
known that depending on the values of the 
coefficients the complex Ginzburg-Landau equation 
possesses a rich variety of solutions. This property 
of the equation stimulated researchers’ interest to the 
Ginzburg-Landau model. In fact, the Ginzburg-
Landau equation is used in the literature in two 
ways: first, as a phenomenological model (that is, as 
a model equation where the coefficients are 
determined from experimental data) and as an 
equation, which can be derived from the equations 
of hydrodynamics by means of the methods of 
weakly nonlinear theory. It is shown in the present 
paper that the complex Ginzburg-Landau equation 
does not have to be assumed. It is derived from the 
shallow water equations which contain the 
averaging coefficients.   
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