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Abstract: - Stability of shallow flows is analyzed in the present paper. Momentum correction coefficients are
introduced in the shallow water equations in order to take into account non-uniformity of the velocity
distribution in the vertical direction. Linear stability of parallel base flow is governed by the modified
Rayleigh equation. Methods of weakly nonlinear theory are used in order to derive the amplitude evolution
equation for the most unstable mode. It is shown that the evolution equation is the complex Ginzburg-Landau

equation.
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1 Introduction

Depth-averaged equations (the Saint-Venant
equations) are often used to model large-scale
turbulent motions in shallow water [1]. These
equations are used when the transverse length scale
of the flow is much larger than water depth. Shallow
water equations have been recently used for linear
stability analyses of transverse turbulent motions in
shallow waters [2]-[8]. Experimental and theoretical
analyses in [2]-[8] show that the development of
instability in shallow water is different from the case
of deep water. Bottom friction in shallow flows acts
as a suppression mechanism of the transverse
growth of perturbations. In addition, development of
three-dimensional instabilities is prevented due to
limited water depth.

One of the main assumptions in shallow water
theory is the independence of the flow
characteristics from the vertical coordinate since
shallow water equations are depth-averaged
equations. There are many cases, however, where
this assumption is not valid. Changes in flow
geometry, flow regimes or roughness of the bottom
boundary can lead to large deviations from the
above assumptions [9]. Averaging coefficients
(momentum and pressure corrections coefficients)
are introduced in [10]-[11] in order to take into
account the non-uniformity of the velocity
distribution in the vertical direction.

The linear stability theory can only predict when
a particular flow becomes unstable. In particular, the
critical values of the stability parameters (critical
Reynolds number for viscous flows or critical bed

friction number for shallow flows) can be calculated
by means of the linear stability theory. However, the
evolution of the unstable disturbance above the
threshold cannot be predicted by the linear theory.
Weakly nonlinear theories [12]-[13] are used to take
into account the effect of nonlinearities analytically
in the unstable region where the parameters are very
close to the critical values. As a result, an amplitude
evolution equation for the most unstable mode is
derived. In particular, the methods of weakly
nonlinear theory are used in [8] to derive the
complex Ginzburg-Landau equation which can be
used to describe the dynamics of shallow flows
behind obstacles (such as islands) above the
threshold.

Previous studies [14] indicated that the stability
characteristics of shallow flows are quite sensitive to
the relative magnitude of the averaging coefficients.
In particular, it is shown that the averaging
coefficients have significant impact on the stability
domains of transverse flows in compound channels.

The present paper is devoted to weakly nonlinear
stability analysis of shallow flows where the
averaging coefficients are taken into account. The
amplitude evolution equation is derived under the
assumption that the bed friction number is slightly
below the critical value. It is shown that the
resulting equation has complex coefficients and is of
Ginzburg-Landau type. Thus, the Ginzburg-Landau
model may be used to analyze the dynamics of
shallow flows in a weakly nonlinear regime.



2 Problem Formulation

The governing equations under the rigid-lid
assumption are [10]:
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where xand y are the spatial coordinates, fis the
time, wand vare the depth-averaged velocity
components in the x and y directions, respectively,

p is the pressure, / is water depth, ¢ ; is the friction

coefficient, f,,f,and f,are the momentum

correction coefficients. Note that the bottom shear
stress is modeled by means of the Chezy formula. It

is also assumed here that the coefficients f3,, 3, and
[, are independent on the spatial coordinates x and
V.

Introducing the stream function y(x, y,¢) by the
relations
u= l//y , V="V,
and eliminating the pressure p we rewrite (1)-(3) in
the form
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where Ais the Laplacian in two dimensions and the

subscripts indicate the derivatives with respect to the
variables xand y. Methods of weakly nonlinear
theory are used in the next section to derive an
amplitude evolution equation for the most unstable
mode.

3 Derivation of the Ginzburg-Landau
equation
Suppose that the base flow

=(U().0) )
is perturbed, and the perturbed solution to (4) is
assumed to be of the form

W=y, tey, + &, + &y, + ... (6)
where ¢ is a small parameter and y,, =U.
Substituting (5) and (6) into (4) and linearizing the
resulting equation in the neighborhood of the base
flow (5) we obtain
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where L is the following linear operator:
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The perturbed component of the stream function
is sought in the form

(%, 3,0) = @, (y) explik(x —ct)] + c.c. 9)
where c.c means “complex conjugate”. Substituting
(9) into (7) we obtain the linearized stability
equation (the modified Rayleigh equation) in the
form
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The boundary conditions are

@, (£00) = 0. (11)
Problem (10)-(11) is an eigenvalue problem. The
eigenvalues, c, =c,, +ic,, m=12,...,

determine the linear stablhty of the base flow (5).

This base flow is said to be linearly stable if
¢,, <0for all m and linearly unstable if c,, >0 at

least for one value of m . Numerical methods [6]
can be used to find the critical values of the

parameter ¢ ,which is defined as follows. The set of
all points in the (k,c,)-plane for which one

eigenvalue satisfies the condition ¢, = 0 while all



other eigenvalues have negative imaginary parts
defines the neutral stability curve,c(f")(k). The

critical value, c(fc) , of the parameter c ; is defined as

follows:
¢\ = max e (k) (12)

Stewartson and Stuart [12] developed a weakly
nonlinear theory for stability of plane Poiseuille
flow where the effect of nonlinearities can be taken
into account analytically. The main idea behind the
weakly nonlinear theory is the following. Consider
the point in the parameter space where k =k,

c=c.and ¢, = cff'). Here the subscripts and the

superscript ¢ indicates the critical values of the

parameters. Suppose that the stability parameter

¢ ,1s slightly below the critical value c.(fc) , namely,

¢, =c(1-¢&%) (13)
In accordance with the linear stability theory the

most unstable mode is given by (9) where the
function ¢,(»)is the eigenfunction of the linear

stability problem (10)-(11) calculated at k =k,

c=c.and ¢, = c(f”). Since the problem is linear,

@,(y)can be replaced by Ce¢,(y), where Cis an

arbitrary constant which cannot be determined from
the linear stability theory. Following Stewartson and
Stuart [12] we restrict ourselves to the conditions
around the critical point in order to study the
nonlinear evolution of the most unstable mode. The
constant C is replaced by a slowly varying function
of the spatial coordinate and time. Thus, we
introduce slow time 7 and stretched longitudinal

coordinate & which moves with a group velocity
C,t

— 2 — _
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It follows from the chain rule that
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Thus, the differential operators 0/0t and 0/ Ox are
replaced by
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The function ¥/, in (9) is sought in the form

v, = A&, 0o (y)explik, (x —ct)]+cc  (16)

where cis the wave speed at k =k, ¢, = c;.c) and

A is a slowly varying amplitude.

In order to find the equation which governs the
evolution of the most unstable mode we consider
higher terms of the perturbation expansion (6).
Substituting (6) and (14)-(16) into (4) and collecting
the terms of order &, we recover equation (7),
where the operator L is defined by (8). Collecting

the terms of order &’ gives
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Collecting the terms of order &’ we obtain
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The form of the right-hand side of (17) and (18)

suggests that the function ¥/, should be sought in the
form

o= A4 P () gl () explik (-]
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Substituting (16) for y,and (20) for y,into (17)
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and collecting the terms proportional to AA we
obtain
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with the boundary conditions

¢y (+0) = 0. (22)
Collecting the terms proportional to

A, explik(x —ct)] gives
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with the boundary conditions
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Finally, collecting the terms proportional to
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with the boundary conditions
¢y (1) = 0. (26)
Note that equation (23) is resonantly forced since
the corresponding homogeneous equation has a

(c)

nontrivial solution if kK =k,, c=c,and ¢, =c;”.

Thus, in accordance with the Fredholm’s alternative
[15] equation (23) has a solution if and only if its
right-hand side is orthogonal to all eigenfunctions of
the corresponding homogeneous adjoint problem.



We define the adjoint operator, L, and adjoint
eigenfucntion @, of L”as follows:

.[¢1aL((01)dy = J-(plLa (¢la )dy (27)

Since ¢, is an eigenfunction of the problem (23),

(24), then the left-hand side of (27) is equal to zero.
This also means that

L? ¢1” =0 (28)
The boundary conditions are
/' (+0) =0 (29)

The explicit form of the adjoint operator is obtained
by integrating equation (10) by parts and using
boundary conditions (11):
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Note that the eigenvalues of problems (10), (11) and
(28), (29) coincide.

The solvability condition for equation (23) has
the form
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Equation (30) determines the group velocityc,, .

The evolution equation for Ais obtained from
the solvability condition for equation (18). It is clear
that (18) has a solution if and only if the right-hand

side of (18) is orthogonal to all eigenfunctions @," of

the adjoint problem (28), (29). It can be shown that
the solvability condition for equation (18) is

A =0A+ A, +u| Al 4 (31)
where the complex coefficients o, d and u of (31)
are expressed in terms of integrals involving the

functions ¢, @, @\, @, @’ and their

derivatives with respect to » and are not presented

here. Equation (31) is the Ginzburg-Landau
equation. In order to evaluate the coefficients of the
Ginzburg-Landau equation one needs to calculate
the critical values of the parameters k, cand

¢ from the solution of the linear stability problem
(10), (11), find the eigenfunction ¢, of the problem

(10), (11), calculate the eigenfunction ¢, of the

adjoint problem (28), (29), solve three linear
boundary value problems (21)-(26) and evaluate the
integrals.

4 Conclusion

The complex Ginzburg-Landau equation for the
evolution of the most unstable mode is derived in
the present paper. The governing equations are the
shallow water equations where the averaging
coefficients are used in order to take into account
non-uniformity of the velocity distribution in the
vertical direction. The complex Ginzburg-Landau
equation is much simpler than the original nonlinear
shallow water equations. On the other hand, it is
known that depending on the values of the
coefficients the complex Ginzburg-Landau equation
possesses a rich variety of solutions. This property
of the equation stimulated researchers’ interest to the
Ginzburg-Landau model. In fact, the Ginzburg-
Landau equation is used in the literature in two
ways: first, as a phenomenological model (that is, as
a model equation where the coefficients are
determined from experimental data) and as an
equation, which can be derived from the equations
of hydrodynamics by means of the methods of
weakly nonlinear theory. It is shown in the present
paper that the complex Ginzburg-Landau equation
does not have to be assumed. It is derived from the
shallow water equations which contain the
averaging coefficients.
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