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Abstract: - The problem is of paramount interest for many modern industrial and natural processes. 2-D non-stationary model of a non-isothermal steam (gas) filtration through a monospherical particle layer with internal heat generation is considered with a particular emphasis on the non­thermal steam/particles local equilibrium accounting the real non-linear properties of the media. The boundary-value problem for multiphase system gas/particles is formulated and discussed. Numerical solution using the effective finite-difference fractional time-step method has shown that some initial thermodynamic perturbations in the system may cause localization of a steam heating (mainly due to a non-linear heat conductivity), which leads to a temperature escalation in a specific spatial subdomains. 

Key-Words: - Non-linear conductivity, heterogeneous system, localization of heat, filtration, heat generation

1   Introduction

Thermal hydraulics in a volumetrically heated porous layer has been reported recently in many publications, e.g. [1-8]. The linear energy equation for the solid/gas mixture was solved numerically in [5]. Volumetrically heated porous layer cooled with forced flow evaporation was studied in [4,6]. 1­D energy equations for the particles and coolant solved [6] under assumption of no differences in solid/liquid temperatures showed reasonable correlation for a water­steam flow at atmospheric pressure. The experimental and analytical study of dryout heat flux in inductively heated beds showed no satisfactory correlation of data obtained [7].

     Non­thermal equilibrium of different phases in a porous medium is especially interesting. Nigmatulin [9] derived the equations of saturated monospherical particle layer in a heterogeneous non­thermal equilibrium approach, with account of the deformable properties of the layer. Based on his equations, 2-D model and numerical algorithm were developed by Kazachkov [3] for the steam flow in a particle layer surrounded by the impermeable medium. First the model was used for geothermal system in numerical simulation of a non-stationary non-isothermal filtration and then the model was modified [1] to describe the dryout location by introducing the initial thermodynamic perturbations, which may lead to abnormal temperature escalation in a local subdomain. Sözen and Vafai [10] presented a general set of the volume­averaged governing equations for the non­thermal equilibrium condensing forced flow through a latent heat storage porous media. And a comprehensive numerical study of the phenomenon has been done. Kuznetsov [11] performed such analysis of the full energy equations for incompressible fluid and solid phases using the perturbation technique and showed that the temperature difference between fluid/solid phases in a semi­infinite packed bed forms a spatially localized wave. Then he investigated [12] a thermal behavior of a 3­D porous bed in a non­thermal equilibrium flow through it assuming the constant thermal, physical and transport properties.
     The present paper is devoted to a detail study of a 2-D non-stationary non-isothermal gas (steam) filtration through a monospherical particle layer under internal heat generation with an emphasis on the non­thermal gas/particle local equilibrium and non-linear properties of media.
2 Model for gas filtration in granular layer with internal heat generation
First a mathematical model for the numerical simulation of a compressible fluid (gas/steam) flow through the volumetrically heated porous bed with particular consideration of the non­thermal local equilibrium is given. Fig. 1 presents schematically the physical problem considered. A two-dimensional self-heated porous packed bed, which consists of homogeneous spherical particle layer is filled with a gas moving from the bottom to the top. Initial temperature distribution is known.
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Fig.1. Scheme of heterogeneous particle-gas media.

      The following assumptions were employed by development of the mathematical model:

· The flow is single phase and is compressible 

· The particles’ sizes are significantly larger than molecular-kinetic scales, but they are significantly less than the characteristic scale of the system

· The physical properties of the media such as thermal conductivity, viscosity, density, etc. are temperature dependent

· Solid particles are immovable and porosity is constant in each monolayer.

2.1
Statement of the basic equations for gas filtration and heat transfer
Based on the equations of saturated granular layer by Nigmatulin [9], in heterogeneous approach, the mathematical model for the system, presented schematically in Fig.1, was developed in [3] for the non-stationary non-isothermal gas filtration in a 2-D case. Thus, the mathematical model of gas filtration in a spherical particle monolayer is presented as
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     The equation array (1) thus obtained is represented in dimensionless form with the following length, time, velocity, pressure and temperature scales introduced, respectively: H, H2/a20, a20/H, 
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 is the characteristic temperature difference in the system,  a20  is heat diffusivity for the particles, 
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 is gas viscosity and K0 is permeability of the particle layer. Bottom zero index depicts the values taken by the initial temperature. Here the first two equations describe the gas filtration velocities by x and z, respectively. Then the other two equations are continuity equation and momentum equation. Further there are three energy equations for the gas, particles of the layer and impermeable surrounding medium, respectively.

     The term QV  in the energy equation for particles is intensity of internal heating. Actually internal heating can be ogranized in gas flow as well or in both phases. The other two important peculiarities of the mathematical model (1) are connected with account of non-linear properties of both phases (the most important is non-linear heat conductivity of gas, which depends on temperature substantially) and local heat transfer between the phases (gas/particle).

     Here the dimensionless criteria are introduced: 
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 is the character filtration velocity, a is the heat diffusivity coefficient, e.g. 
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 (parameter of the structure of the granular layer), 
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 is the character pore radius, 
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 is the particle thermal expansion coefficient.
     Here an interactions of three different processes occur. Non-thermal equilibrium between gas and solid particles in the layer, non-linear processes´ mutual influence and non-linearity of the physical properties of gas and particles (mainly, properties of gas are strongly dependent on the temperature and pressure). The first above-mentioned peculiarity is touched with the term 
[image: image36.wmf])

(

2

1

T

T

-

x

, which describes the local heat transfer between particles and flow. From the mathematical point of view it causes some limitation on the parameter 
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 in the energy equations for solid particles and gas flow appears to be huge by very small particles. Thus, the energy equations have terms like “
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 is going to zero while H/b is growing. Therefore as the temperature difference between particles and gas flow is going to zero, there is the homogeneous mixture in limit. In such case the heterogeneous system considered should be replaced by homogeneous one to avoid this peculiarity causing numerical inaccuracy. 
     The other new phenomenon supposed to be in the system due to localization of the dissipate processes caused by a non-linear heat conductivity. This phenomenon was studied at first by Samarskii et. al. [13] for quasilinear parabolic equations, e.g. one-dimensional heat conductivity equation with a non-linear heat conductivity 
[image: image41.wmf]m

T

k

k

0

=

 (m=0.5–1.0). Some gases and steam follow this law under certain range of the temperature and pressure. In our case all these phenomena are interconnected that makes the problem especially interesting though quite cumbersome one for the numerical simulation and analysis.

2.2 Statement of the boundary and initial conditions
The dimensionless initial and boundary conditions for the equation array (1) have the form:
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      The surroundings may do the heat release from the saturated particle layer or perform the thermal isolation of the layer. In the last case, the energy equation for the surroundings is omitted with the sidewall´s temperature kept constant. The system is considered symmetrical relatively to the vertical axis. The normal velocity is zero at the non-permeable boundary, where the continuity of the temperature profiles and heat fluxes must be satisfied. If the gas state equation is used, the initial gas pressure spatial distribution 
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 in (2) can be identically replaced by the gas density distribution
[image: image60.wmf])

,

(

0

10

0

1

z

x

r

r

=

. The initial surrounding’s temperature distribution 
[image: image61.wmf])

,

(

0

3

3

z

x

T

T

=

 was chosen uniform, at least by one coordinate, or constant in the whole domain. 

3 Numerical simulation of a steam filtration through granular layer 

The method of fractional steps (МFS) developed by Janenko [14] has been implemented for the numerical solution of the boundary-value problem (1)-(2). The strategy for this method consists in a split of each of basic two-dimensional equations into the two one-dimensional equations so that the full approximation for two-dimensional equation array (1) is achieved in two steps by time (each temporal step is divided by two that is why the method is called as the method of fractional steps). Splitting between the spatial variables transformed the two-dimensional problem into the two separated 1-D problems as follows. On the lower half-step:
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On the upper half-step (second temporal semi-step):
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 is introduced as the scheme´s approximation parameter: 
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. By choosing this parameter between 0 and 1 the term with phase heat exchange has different influence in first and second half-step. It can be shifted to one or other half-step, which allows to control the numerical scheme´s properties. 

     Derivatives inside two-dimensional numerical domain are approximated by the following second-order central differences:
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At the boundary of the numerical domain the three-point approximation is applied:
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With regards to coordinate z the approximations of the derivatives are performed in a similar way. The time derivatives are calculated at each point (i,j) of the numerical domain by the first order forward differences:
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 is a temporal step on the numerical grid chosen.

     Thus, the boundary problem (2)-(4) was solved numerically. The boundary conditions (2) were splitted for the equation arrays (3) and (4) by x and z, correspondingly. The numerical simulation has shown that with uniform initial temperature distribution in the whole numerical domain the both temperatures of the steam and particles are monotonously growing in time due to internal heating. But in many real cases a uniform temperature distribution in the domain is impossible to get. In numerical simulation the initial non-uniform temperature of the steam was modeled as harmonic perturbation of the uniform distribution with small amplitudes. This leads to the local abnormal heating of the steam in some places as shown in Fig. 2, where the results of calculation and experimental data obtained [1] are given to the left and to the right, respectively.
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Fig. 2. Calculation and experimental data for    abnormal local heating of a steam

As clearly shown in Fig.2, the correspondence between the experimental data and numerical simulation is quite good for the new phenomenon of a local abnormal heating due to non-linear heat conductivity. 

     Also the results on numerical simulation performed by this methodology for geothermal system where hot steam is flowing up from the underground through particle layer heated by steam are given in Fig. 3.

Fig. 3. Temperature distribution in the layer.

4   Conclusions

1. The heterogeneous model developed can be applied for the simulation of a gas/steam flow in particle layer with local heat transfer between the particles and the flow.

2. The model is inappropriate for the case of small particles when the temperatures of the particles and flow quickly reach equilibrium (homogeneous mixture).

3. Small temperature perturbations may cause the local abnormal heating (blow-up of temperature) due to the non-linear heat conductivity of the steam. The mechanism is that,    because of  higher conductivity in the hotter regions, the heat flux from internal sources to those regions maybe greater than that to the colder ones.

4. The results of numerical simulation satisfy the experimental data for particle bed cooling, for which local peaks of abnormal steam heating in a particle bed with internal heat generation were observed in a number of cases.

5. The method of fractional steps is economical and effective. It seems comparatively easy to extend for the case of 3-D flow because the numerical grid for the 3-D case requires just 3N points, compared to 2N points which required for the 2-D case on NxN grid.
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