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ESPAÑA

Abstract:- We study, from the point of view of the hyperbolic model of heat conduction, the temperature
pro�les of two semi-in�nite bodies that initially are at di�erent temperaturesT 1

0 and T 2
0 , respectively, and

are placed together in contact at time t = 0, supposing that the contact is not perfect and there exists
thermal contact resistance.
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1 Introduction
The known parabolic model of heat conduction im-
plies the unacceptable physically assumption that
the speed of heat conduction is in�nite. Indeed,
from the practical point of view, this equation pro-
duces serious erroneous results in many processes
of the modern industry and technology where great
amounts of heat are applied to materials in very
short times (high-intensity electromagnetic radia-
tion, �lm applications, laser surgery, for instance).
This fact has promoted the need of a new heat
conduction model called hyperbolic model of heat
conduction that gives rise to the hyperbolic heat
equation (see [4])

∂T

∂t
+ τ

∂2T

∂t2
= α ∆T (1)

where τ is an assumed constant material character-
istic called thermal relaxation time and the thermal
di�usivity of the mediumα = k

ρc , the thermal con-
ductivity k, the speci�c heat c and the density ρ of
the material are assumed to be constant.
In [3] we have studied, from the point of view

of hyperbolic model, the heat conduction problem
of two bodies that initially are at temperaturesT 1

0

and T 2
0 , respectively, and at time t = 0 are placed
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together in contact, assuming a perfect thermal
contact between bodies.
In this paper we study the same problem sup-

posing that the contact is not perfect and a �nite
thermal contact resistance there exists. We �nd a
complete analytical solution of the problem and we
compare it with the solution obtained in the case
of direct contact in [3] and with the analogous ones
obtained previously by Xin and Tao in [5] under the
viewpoint of parabolic model of heat conduction.

2 Analytical development
Consider two semi-in�nite isotropic bodies with
physical properties τi, ρi, ci and ki where subscript
i = 1, 2 refers each body, that are initially held at
di�erent but uniform temperatures,T 1

0 and T 2
0 , re-

spectively. At t = 0 the bodies are placed together
in contact, and each one experiences transient heat
conduction process. We assume that there is a �-
nite value of thermal resistance between the two
contacting surfaces. We denote byh the contacting
conductance, which is the reciprocal of the contact-
ing thermal resistance. The governing equations
for the temperatures of the two bodies are

αi
∂2Ti

∂x2
= τi

∂2Ti

∂t2
+

∂Ti

∂t
(i = 1, 2), (2)

and the initial and boundary conditions are

∀x < 0 T1(x, 0) = T 1
0

∂T1

∂t
(x, 0) = 0 (3)



∀x > 0 T2(x, 0) = T 2
0

∂T2

∂t
(x, 0) = 0 (4)

∀t > 0 q1(0, t) = q2(0, t) (5)
∀t > 0 h(T1(0, t)− T2(0, t)) = q1(0, t) (6)
∀t > 0 T1(−∞, t) = lim

x→−∞T1(x, t) = T 1
0 (7)

∀t > 0 T2(∞, t) = lim
x→∞T2(x, t) = T 2

0 . (8)

We begin the resolution of this problem taking
Laplace transform of (2) with respect to t. Using
(3) and (4) in the standard way we get

T̂i(x, s) = Ai eβi x+Bi e−βi x+
T i

0

s
, βi =

√
s + τis2

αi

and from (7) and (8) we obtain B1 = 0, A2 = 0.
The expression relating heat �ux and tempera-

ture in the hyperbolic model is (see [4])

qi(0, t) =
−ki

τi
e
−t
τi

∫ t

0
e

η
τi

∂Ti

∂x
(0, η) dη . (9)

Taking into account the Laplace transform of
expression (9) and condition (5), and from the
Laplace transform of condition (6) we can compute
A1 and B2. Finally, we get the Laplace transform
of the temperature pro�les

T̂1(x, s) =
T 1

0

s
+

(T 2
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0 ) e
x
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√
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)
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0

s
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s
√

α1 k2
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×
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The hard mathematical problem is now the Laplace
inversion of these functions.

2.1 Temperature pro�le of body 2.
We start by calculating the inverse Laplace trans-
form of T̂2(x, s). As general rule in the sequel, the
inverse Laplace transform of a given function f(s)
will be denoted with the same capital letterF (t).
Put

g2(s) := e
−x

r
s+τ2s2

α2 g1(s) :=
k1
√

α2

k2
√

τ1s + 1
×

×
√

τ2s + 1

s
√

α1

(
1 + k1

√
α2
√

τ2s+1

k2
√
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√

τ1s+1
+ k1

√
s

h
√

τ1s+1
√

α1

)

in order to �nd T2(x, t) by application of convolu-
tion theorem to G1(t) and G2(t).
We start �nding the more easy inverse of g2(s).

The inverse of g2(s)
s has been calculated in [1]

L−1

[
g2(s)

s

]
(t) = H

(
t− x

v2

) (
e
− x

2
√

α2τ2 +

+
x v2

4α2τ2

∫ t

x
v2

e
− u

2τ2

I1

(√
( u
2τ2

)2 − x2

4α2τ2

)
√

( u
2τ2

)2 − x2

4α2τ2

du


 ,

where H(u) is the Heaviside function and vi :=√
αi
τi

, i = 1, 2 is the speed of thermal propagation
in every body. Now, the application of the known
relation (see page 507 in [2] for instance)

L−1[f(s)] =
d

dt
L−1

[
f(s)

s

]
, (10)

gives us

G2(t) := δ

(
t− x

v2

) (
e
− x

2
√

α2τ2 +

+
v2x

4α2τ2
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x
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−u
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+H
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v2 x
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,

where δ(u) is the Dirac's δ distribution .
We shall assume in the sequel τ1 ≤ τ2. To �nd

the more involved Laplace inverse of g1(s) we shall
use the convolution theorem again. To do this we
put

p1(s) :=

√
τ2

√
s + 1

τ2

s
, B :=

k2
√

α1

k1
√

α2
, A :=

k2

h
√

α2

p2(s) :=
1

B
√

τ1

√
s + 1

τ1
+
√

τ2

√
s + 1

τ2
+ A

√
s

.

We try to use Bromwich's inversion formula. To
get a convergent integral in this formula in order



Figure 1: Bromwich's contours

to compute L−1[p1(s)] we have to consider p1(s)
s .

Applying Bromwich's formula

L−1

[
p1(s)

s

]
=

1
2πi

∫ γ+i∞

γ−i∞
est

√
τ2

√
s + 1

τ2

s2
ds.

We have to deal with a branch point ins = −1
τ2

and
a double pole in s = 0. Hence, we choose the down
contour of �gure 1 and by Bromwich's formula

L−1

[
p1(s)

s

]
= t +

τ2

2
− 1

π

∫ − 1
τ2

∞
eyt

√
τ2

√−b

y2
dy,

where t+ τ2
2 is the residue in s = 0 and b = y + 1

τ2
.

Once again according to (10)

P1(t) = 1− 1
π

∫ − 1
τ2

−∞
eyt

√
τ2

√−b

y
dy .

Analogously, to �nd the inverse of p2(s) by
Bromwich's formula it is necessary to consider
p2(s)

s . In this case there are three branch points
s = − 1

τ2
, s = − 1

τ1
and s = 0. Hence, we choose

the up contour of �gure 1. According to the value
of τ1, τ2, A and B some poles can exist. For the ma-
terials used in subsequent numerical computations
the poles are in the half-plane Re(z) > 0. In this
way, in order to simplify we always suppose that

the physical properties of the problem do not cause
any pole inside the contour. Applying Bromwich's
formula we obtain L−1

[
p2(s)

s

]
and using (10) we

get by di�erentiating
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√
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+
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π A
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√
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√

a
√
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dy

where a = y + 1
τ1
. Finally, by convolution theorem

we obtain G1(t) =
∫ t
0 P2(u) P1(t− u) du and
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 .

2.2 Temperature pro�le of body 1.
Computations for body 1 are completely similar.
Putting

Q1(t) = 1− 1
π

∫ − 1
τ1

−∞
ey t

√
τ1
√−a

y
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and
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+
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√
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B and C = k1

h
√

α1
, we obtain by convo-

lution R1(t) =
∫ t
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3 Solution analysis
To apply our theoretical results to some concrete
problem we choose as materials uranium dioxide
UO2 for body 1 and liquid sodium Na for body
2 because they can give a good model to study
an hypothetical accident condition in nuclear reac-
tors (see [6]). The values of physical parameters
used are taken from that paper: α1 = 4.89 10−7,
α2 = 3.55 10−5(m2

s ), k1 = 0.5, k2 = 9.15 ( cal
m◦C ),

T 1
0 = 3000, T 2

0 = 800 (◦C), τ1 = 1.69 10−13,
τ2 = 6.72 10−12 (s) and we assume h = 109 W

m2◦C .
Perhaps the interface is the most interesting

point to study the temperature distribution. We
can compute easily the initial and limit tempera-
ture in left and right interfaces by using the initial
and �nal value theorems of Laplace transforms. We
get

lim
s−→∞ s T̂2(0, s) = T 2

0 lim
s−→∞ s T̂1(0, s) = T 1

0 (11)

for the initial temperature in the interface and

lim
s−→0

s T̂2(0, s) =
T 1

0 k1
√

α2 + T 2
0 k2

√
α1

k1
√

α2 + k2
√

α1
(12)

lim
s−→0

s T̂1(0, s) =
T 1

0 k1
√

α2 + T 2
0 k2

√
α1

k1
√

α2 + k2
√

α1
(13)

for the limit temperature in the interface of bodies
2 and 1, respectively. According to (12) and (13)
the equilibrium (limit) temperature is 1498◦C and
is independent on the thermal resistance. The ini-
tial interface temperature is3000◦C for body 1 and
800◦C for body 2 according to (11). We can see
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Figure 2: Hyperbolic interface temperature in body 1
(up) and 2 (down).

that the initial interface temperature is di�erent
according to the selected body to compute it. This
fact is not surprising since equation (6) states that
T1(0, t) 6= T2(0, t) until the heat �ux vanishes. On
the other hand, under a physical viewpoint inter-
face is a mixture of air and contact zones between
the two bodies and the interface temperature evo-
lution in each body is di�erent. Figure 2 shows
the temperature evolution at the interfaces of bod-
ies 1 (up) and 2 (down) in the temporal interval
[0, 10−13].

The presence of the Heaviside function in the ob-
tained pro�les of temperaturesT1(x, t) and T2(x, t)
provides them a wavy character because deter-
mines in every time t a zone in the body where the
initial situation remains (Ti(x, t) = T i

0) because the
heat has not arrived and another zone where the
temperature is di�erent than the initial since the
perturbation produced by the change of tempera-
tures has arrived. Table 1 shows the temperature
evolution of body 2 in a concrete point. We can
see that in this point the change of temperatures
is produced when 5 10−12 s have elapsed since the
beginning of the heat conduction process.



x(m) t(s) Body 2 (◦C)
10−8 10−13 800
10−8 10−12 800
10−8 5 10−12 1209
10−8 10−11 1301
10−8 10−10 1414
10−8 10−8 1489

Table 1: Temperature of body 2 in 10−8 m.

4 Di�erences with the case of
perfect contact

In the case of perfect thermal contact, the solu-
tion of our problem has been obtained previously
in [3]. The main di�erence between the two sup-
positions is found at the initial temperature values
obtained at interface. In the case of direct contact
the interface temperature varies from2441◦C until
the equilibrium temperature 1498◦C. We obtain
these values replacing x = 0 in one of the two tem-
perature pro�les (body 1 or 2), since in this case
the interface is an �ideal" line (T1(0, t) = T2(0, t)).
However, in the case of contact with resistance the
interface is a complex region between two bodies
and then, the temperature evolution of the two
bodies at this point is di�erent until the equilib-
rium temperature is reached.
In other points di�erent from the interface the

qualitative behavior of temperature is the same,
but obviously in the case of direct contact, on
a concrete point the equilibrium temperature is
reached sooner than in the case of contact with re-
sistance. Due to the fact that in the case of perfect
contact there is no resistance, when the value ofh
increases (decreases the resistance value) the di�er-
ences between the cases are smaller. Table 2 shows
temperatures on a �xed pointx = −10−7 m and at
di�erent times in cases of direct contact and con-
tact with resistance for the value ofh that we have
supposed (h = 109 W

m2 ◦C ) and for h = 106 W
m2 ◦C .

As we can observe at table 2, for h = 109 W
m2 ◦C

there are not relevant di�erences between both
cases. However, when the value of h decreases
(h = 106 W

m2 ◦C ) these di�erences become more and
more considerable. The value of h for which there
are not important di�erences between both cases
depends on the considered point. Closer to inter-

Res.(◦C) Dir. (◦C)
t(s) h = 109 h = 106 h = 109 h = 106

10−5 1537 1989 1539 1539
10−6 1620 2052 1622 1622
10−7 1876 2538 1879 1879
10−8 2532 2937 2535 2535
10−9 2998 3000 3000 3000
10−10 3000 3000 3000 3000

Table 2: Temperature in x = −10−7 m in di�erent
times for di�erent h values in resistance and direct
cases.

face the point is, higher the value of h must be in
order to decrease these di�erences. For instance, if
we suppose h = 109 W

m2 ◦C there are not di�erences
between two cases in x = −10−7 m, however, in
x = −10−8 m (nearer of the interface) there are
di�erences for h = 109 W

m2 ◦C , but there are not for
h = 1010 W

m2 ◦C .

5 Parabolic solution
The temperature distribution in body1 and 2 from
the point of view of parabolic model is found in [5].
The main di�erence with hyperbolic solution is

the absence of the Heaviside function re�ecting
the fact of in�nity speed of heat propagation in
parabolic case. In fact parabolic solution shows
that since the heat conduction process begins, the
temperature of two bodies is always di�erent from
the initial.
We have found di�erences between both mod-

els at interface for short time intervals. We can
also note that di�erences are irregular, this is to
say, there are temporal intervals in which parabolic
temperature is higher than hyperbolic one, and
temporal intervals in which hyperbolic tempera-
ture is higher than parabolic one. This is due to
a di�erent temperature evolution in every model.
In �gure 3 we can observe the behavior of the tem-
perature pro�le of body 2 at interface for parabolic
model (dashed line) and hyperbolic model (con-
tinuous line). We have obtained that in our con-
crete case interface di�erences are present for t <
10−10 s.
We have obtained di�erences between both mod-

els in points di�erent from interface too. Table 3 is
made for x = 10−8m at di�erent times. Di�erences



2·10-134·10-136·10-138·10-131·10-12

900

1000

1100

1200

1300

1400

Figure 3: Parabolic (continuous) and hyperbolic
(dashed) interface temperature of body 2.

x(m) t(s) Par.(◦C) Hyper.(◦C)
10−8 10−8 1490 1489
10−8 10−10 1413 1414
10−8 10−11 1240 1301
10−8 8 10−12 1213 1281
10−8 5 10−12 1148 1209
10−8 10−12 900 800

Table 3: Parabolic and hyperbolic temperatures in
x = 10−8m at di�erent times.

are found in short times again. When the value of
h decreases (the resistance value increases) di�er-
ences between the models are smaller. At point
x = 10−8 we see in the table that there are dif-
ferences for h = 109 W

m2 ◦C , but they vanish for
h = 106 W

m2 ◦C . This fact is easy to explain: The
main di�erence between both models is the relax-
ation time, and then, when the resistance value is
high the e�ect of thermal relaxation time is not
signi�cant in front of the e�ect of the resistance,
which makes that in both cases we practically work
with the same model.

6 Conclusions
In this paper we have obtained, from the point of
view of hyperbolic model, the complete analytical
solution for the problem of computation of the tem-
peratures of two bodies that initially are at di�er-
ent temperatures and at t = 0 are placed together
in contact, supposing that exists thermal resistance
between them.
The obtained temperature pro�les are compared

with the solution in the case of direct contact. The
di�erences between both cases are found at every
point of the bodies and decrease when the value

of h increases. The value for which we cannot ob-
serve di�erences depends on the considered point.
Then, when the value of h is signi�catively small
the temperature pro�les obtained in the case of di-
rect contact produce erroneous results and we have
to use the temperature pro�les obtained in the case
of contact with resistance although the expressions
are more involved.
Between parabolic and hyperbolic solutions we

have found di�erences too. These di�erences can
be observed at every point of bodies in short times,
and decrease when the value of h decreases too.
Hence, we cannot use parabolic solution in pro-
cesses in which short times are important, this is
in processes in which great amounts of heat are ap-
plied to material in very short times and hyperbolic
model has to be used in this kind of processes.
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