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Abstract: - We study a parabolic ODE system modeling tumour growth proposed by Othmer and Stevens [5]. In 
use of the transformation of Levine and Sleeman [4], we reduce it to a hyperbolic equation with strong dissipation. 
Then, we show the existence of collapse in arbitrary space dimension by the method of energy. 
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1   Introduction 
 

In [5] H.G. Othmer and A. Stevens derived a parabolic-

ODEsystemmodeling chemotactic aggregation of myxobac-

teria, where unknown functions P = P(x;t) and W =

W(x; t) stand for the density of the bacteria and that of

control species, respectively. That is,

Pt =DrÅ[Pr(log
P

à(W)
)] (1)

Wt =WP in äÇ(0;1) (2)

with

Pr(log
P

à(W)
)Åó= 0 on @äÇ (0; T) (3)

and

P(x;0) =P0(x)ï 0;

W(x;0) =W0(x)ï 0 in ä; (4)

where äis a bounded domain inRn with smooth bound-

ary @ä, D> 0 is a constant,

à(W) = (
W +ã

W +å
)a

 

stands for the sensitivity function with the prescribed

constants ã,å> 0; a and ódenotes the outer unit normal

vector. In fact, [5] provides the reinforced random walk

on lattice points as in Davis [1], takes the renormalized

limit, and gets the above system.

This method of mathematical modeling has gained the

understanding of tumour angiogenesis by the numerical

computation, and actually, [4] classiåed the solution ac-

cording to its behavior as t! +1 :

1.(aggregation) kP (Å; t)kL1 < C for all t

lim inf
t!1

kP (Å; t)kL1 > kP (Å; 0)kL1 .

2.(blowup)kP (Å; t)kL1 becomes unbounded

in ånite time.

3.(collapse)

lim sup
t!1

kP (Å; t)kL1 < kP (Å; 0)kL1 .

Mathematical analysis of this model was done by Levine

and Sleeman [4], and provided some understanding of

numerical åndings. However, their simpliåcation of the

model does not seem to be eécient in some cases, and the

purpose of the present paper is to provide a mathematical

study for the original system.

 



In fact, taking logW = â, we get ât = P from the

second equation of (1) and it holds that

r(log
P

à(W)
) =
rP
P
Ä àr(W)eârâ

à(W)

for àr(W) = a(åÄã)(W+ã
W+å)aÄ1(W +å)Ä2.

We have

àr(W)

à(W)
= a

(åÄã)

(W +ã)(W +å)
,

and hence it follows that

Pr(log
P

à(W)
) =rP Ä a(åÄã)eâ

(eâ +ã)(eâ +å)
âtrâ.

Thus, (1) is reduced to

âtt =DÅâtÄr(
aD(åÄã)eâ

(eâ +ã)(eâ +å)
âtrâ) (4)

At this stage, [4] replaced the coeécient

a(åÄã)eâ

(eâ +ã)(eâ +å)
=

a(åÄã)W

(W +ã)(W +å)

by a positive constant, under the agreement that ãù
W ù å or åù W ù ã. However,there is a case that

W = eâ is unbounded, where this simpliåcation is not

valid.

On the other hand, the second equation of (1) is also a

simplication of the original in [5],

Wt =R(P;W) (5)

for

R(P;W) =
ïPW

k1 +W
+

çrP

k2 +P
ÄñW,

where ï; çr; k1; k2 and ñare non-negative constants,

but we can justify this process in the range of 0<ñú 1

and 0 î çr ú 1: In fact, multiplying both sides by eñt,

we have for ~W = eñtW that

~Wt =
ïP ~W

k1 + eÄñt ~W
+
çreñtP

k2 +P

=
ïP

(k1= ~W) + eÄñt
+

çrP

k2eÄñt +PeÄñt
.

Neglecting eÄñt, k2eÄñt in the right-hand side, we get

that

~Wt =
ïP ~W

k1
+çre

ñt;

or equivalently,

Wt + ñW =
ïPW

k1
+çr :

This equation may be replaced by Wt =constantÇPW in

the case of W ù çr and P ù ñ:

Therefore, taking (1), we shall study the asymptotic pro-

åle of the solution. Diãerently from [4], mathematical

tool applied here is the theory of dissipative hyperbolic

systems. We need several more notations and exact state-

ments are given in the next section.

 
 
2 Problem For mulation 
In use of the above transformation of taking â = logW ,

the boundary condition (2) is reduced to

@â

@ó
j@ä = 0: (6)

In fact, this condition implies @P
@ó = @W

@ó = 0 on @ä;

and hence (2) follows. Therefore, we shall construct time

global solutions to (4) with (6).

 
 
2.1 Reduction Process  
For the moment, let us put â = çf(x; t) + u(t;x) and

introduce the equation concerning u= u(x; t) :

utt =DÅut

+rÅ
î

aD(ãÄå)eâ

(eâ +ã)(eâ +å)
(çft +ut)r(çf +u)

ï
(7)

= Äç(ftt ÄDÅft) +rÅ[çA(f;u)ftru]

+[A(f; u)utru] +rÅ[A(f; u)âtrçf]

where A(f; u) = aD(ãÄå)eÄ çfeÄu

(1+ãeÄ çfeÄu)(1+åeÄ çfeÄu) . Therefore, we

see that (7) is hyperbolic if å>ã; and henceforth we are

concentrated on this case. Namely,

 



(A-0) a < 0 and åÄã> 0

and f = f(x; t) satisåes

ftt ÄDÅft = 0 with
@f

@ó
j@ä = 0: (8)

(6) is reduced to

@u

@ó
j@ä = 0. (9)

Now, we describe more details on the reduced equation.

In term of

Pv[u] = utt ÄrÅ
Ç
çA(f; v)ft(x; t)e

ÄçfÄvru
É

ÄrÅ
Ç
eÄçfÄvA(f; v)utrv

É
ÄDÅut ÄrÅç

Ç
A(f; v)eÄçfÄvutrf

É
; (10)

equation (7) is written as Pv[u]

= Äç(ftt ÄDÅft) + ç2rÅ
Ç
A(f; v)eÄçfÄvftrf

É
:

Therefore, in this case the problem is reduced to

(TM)f

8>>>>>>>>>>><>>>>>>>>>>>:

Pu[u] = ç2rÅ
Ç
A(f; v)eÄçfÄvftrf

É
in äÇ (0;1)

@u
@ó = 0 on @äÇ (0;1)

u(x; 0) = h0(x); ut(0; x) = h1(x) in ä

ñu1 =
R

ä utdx = 0.

Here, we imposed ñu1 = 0, regarding that

@t

Z
ä
utdx =

Z
ä
rÅ
Ç
çA(f; u)fte

Äçf eÄuru
É

+rÅ
Ç
eÄçfeÄuA(f; u)utru

É
+DÅut +rÅç

Ç
A(f; u)eÄçfeÄuftrf

É
dx

=

Z
@ä
fçA(f; u)eÄçfÄuru Åó

+eÄçfÄuA(t; u)utruÅó

+Drut Åó+çA(f; u)eÄçfÄuftrf)ÅógdS = 0:

Hencefore, we put @t = @=@t;

@ãx =

í
@

@x1

ìã1

ÅÅÅ
í

@

@xn

ìãn
 

and jãj = Pn
i=1 jãij; where ã= (ã1;ÅÅÅ; ãn) denotes the

multi-index. Then, for given non-negative integer m and

small " > 0 we take f = f (x; t) satisfying

(A-I) f jt=0 = 0 and for jãj + 2i î 2m

k@ãx @itfkL1(äÇ(0;1) < ";

besides (8). Such f can be given explicitely, and it holds

also that

lim
t!+1

kft(Å; t)kL1(ä) = d; (11)

where d = 1
jäj
R

ä ft(x; 0)dx > 0:

Remark 1. Levine and Sleeman [4] replaced a(åÄã)W
(W+ã)(W+å)

by a positive constant, and dealt with (TM )f for n = 1

and f(t; x) = t. Our reduction is its generalization, and

still works to their simpliåed system. Discrepancy of the

simpliåcation [4] occurs for the solution constructed in

each reduction.

 
 
2.2 Known results 
For the simpliåed equation proposed by Levin and Slee-

man, many results have been known. Levin and Sleeman

in [4] constructed the solution of the problem with expo-

nential growth case when n = 1 and a = 1;Ä1. They

showed the existence of collapse type solution in the case

of n = 1 and a = Ä1 and blow up solution in the case

of n = 1 and a = 1. For the linear growth case, in

[8] Yan, Chen and Liu obtained the collapse solution for

n = 1; 2; :::; a = Ä1. Also they proved the existence of

a time global solution even if n = 1 and a = 1. Further

they stated there exists a collapse solution in the case of

n = 1; 2; ::: and a = Ä1 without any poof. The existence

of aggregatinon type solution is unknown at this present.

Recently K-S[3] dealt with the problem in case a < 0; n =

1; 2; ::: and f(x; t) = t.

 
 
2.3 Our aim 
Our aim is to guarantee the existence of time global solu-

tion to the problem without Levine and Sleeman's simpli-

åcation under weakened condition on f and prove that it

collapses. Further we deal with the case where çdepends

on x.
 



 
 
3   Problem Solution 
Now, we introduce functional spaces used in this paper.

First, H l(ä) and H l((0;1)Çä) denote the usual Sobolev

spaces W l;2(ä) and W l;2(äÇ (0;1)) of order l on ä and

(0;1)Ç ä; respectively. Next, for functions h(t; x) and

k(t; x) deåned in äÇ [0;1); we put that

(h; k)(t) =

Z
ä
h(t; x)k(t; x)dx and

khk2l (t) =
X
jåjîl

k@åh(Å; t)k2L2(ä)(t),

and sometimes we write khk(t) for khk0(t).

Thus, inner product p( ; ) stands for the L2

 
 
3.1 Main result 
Theorem 1 the initial value (h0; h1) 2 V 2l+1(ä) Ç
V 2l(ä) be given, and the conditions (AÄ0); (AÄ I) and

(11) be satisåed with " > 0 suéciently small: Then, we

have a unique solution

u = u(t; x) 2
l\
i=0

Ci
Ä
0;1;H2l+1Äi(ä)

Å
to (TM)f and it holds that

sup
tï0

E2l[u](t) î C(é+ 1); (12)

where C > 0 is a constant, é= kh0k22l+1 + kh1k22l;

E2l[u] =
X
jãjî2l

k@ãutk2

+
X
jãjî2l

k
q
çA(f; u)eÄçfÄuft@ãruk2

for r = (@=@x1;ÅÅÅ; @=@xn): Furthermore, we have

lim
t!+1

kutk2l(t) = 0:

From the above theorem, we get the solution

(P;W ) to the original system (1)-(3) by

P (x; t) = çft(x; t)+ut(x; t) and W (x; t) = eçf(x;t)+u(x;t):

 

 
lim

t!+1
kP (Å; t)ÄçdkL1(ä) = 0 (13)

for d = 1
jäj
R

ä ft(x; 0)dx > 0: On the other hand,

we have

P (x; 0) = çft(x; 0) + h1(x)

and it is possible to take h1 = h1(x) satisfying

kP (Å; 0)kL1 < çd or kP (Å; 0)kL1 > çd:

Thus, we have the following.

Corollary 1 If (A Ä 0) is satisåed, then there are ag-

gregation and collapse in (1) Ä (3):More precisely, (13)

holds and consequently, it follows that

lim
t!+1

inf
ä
W (Å; t) = +1:

 
 
3.2 Related result 
We can apply the above result to a slightly diãerent type

of solution. â(x; t) = ç(x)t + u(x; t); where ç(x) > 0 is

a smooth function satisfying @ç
@ój@ä = 0: In this case, we

have from (7) that

utt = DÅut

+r Å
î

aD(ãÄ å)eâ

(eâ +ã)(eâ + å)
(ç(x) + ut)ru

ï
:

Therefore, writing ç for ç(x); we obtain

utt = DÅç+DÅut

+r Å[çA(ç(x); u)ru] + r Å[A(ç(x); u)utru] :

where A(ç(x); u) =

aD(åÄ ã)

(1 +ãeÄç(x)teÄu)(1 +åeÄç(x)teÄu)
:

We take an integer M ï [n=2]+1 and parameter "; ç0 > 0

satisfying

(A-II) ç(x) ï ç0 > 0; ç(x) 2 C1(ñä) andX
0<jãjîM

j@ãxçj < ".

 



Then, letting

Pv[u] = utt ÄrÅ
h
çA(ç(x); v)eÄç(x)teÄvru

i
ÄrÅ

h
eÄç(x)teÄuA(ç(x); u)vtru

i
ÄDÅut;

we can reduce the problem to

(TM)ç

8>>>>>>>>>>><>>>>>>>>>>>:

Pv[u] = DÅç(x) in äÇ (0;1)

@u
@ó = 0 on @äÇ (0;1)

u(x; 0) = h0(x); ut(0; x) = h1(x) on ä

ñu1 =
R

ä utdx = 0.

Here, it is imposed that ñu1 = 0 in (TM)ç rom the same

reason as in the case (1).

Theorem 2 Let l be an integer in 2l ï [n=2] + 1, the

initial value (h0; h1) 2 V 2l+1(ä) Ç V 2l(ä) be given, and

the conditions (AÄ0) and (AÄII) be satisåed with " > 0

and large ç0 > 0: Then, if é= kh0k22l+1 +kh1k22l is small,

we have a unique solution

u = u(x; t) 2
l\
i=0

Ci
Ä
0;1;H2l+1Äi(ä)

Å
to (TM)ç and it holds that

E2l[u](t) î C(é+ "t) (t ï 0);

where C > 0 is a constant.

 
 
3.3  Outline of proof 

Now, we describe the method to prove those results

brieçy. In each reduction, we take the following iteration

scheme and derive energy estimates.8>>>>>>>>><>>>>>>>>>:

Pui[ui+1] =ç2r(A(f;ui)eÄçfeÄuiftrf);

in äÇ (0;1)
@
@óui+1j@ä = 0 on @äÇ (0;1)

ui+1(x;0) =
Pi+1
j=1hj'j(x);

ui+1t(x;0) =
Pi+1
j=1h

0
j'j(x)

 
 

where ui =
Pi

j=1 fij(t)'j(x) for i ï j, h0(x) =
P1

j=1 hj'j(x);

h1(x) =
P1

j=1 h
0
j'j(x). We determin fij(t) by the solu-

tion of the following system of ordinary equations with

initial data. For j = 1;ÅÅÅ; i+ 18><>:
(Pi[ui+1]; 'j) = ç2(r(A(f; ui)eÄçfÄuiftrf ); 'j);

fi+1j(0) = hi+1; fi+1jt(0) = h0i+1.

In the årst case of (TM )f ; we have a crucial obsevation

of the degeneracy of the coeécients of Pu[u] as t! +1.

This means that the term involving derivatives with re-

spect to x must be dealt with carefully. Actually, diãer-

ently from Kawashima and Shibata [2], exponential de-

cay property of the solution to this system is not ex-

pected.(See Remark 2 below.) The second obsevation

comes from the growth property of the nonlinear term

eÄu. Fortunately, the degeneracy of the coeécients of

the equation cancels this growth, and we can derive the

energy estimates. This enables us to get the solution by

considering Pi[ui+1]ÄPiÄ1[ui] and standard argument for

ui+1Äui = wi. (TM )ç is more diéecult because of the

term Åç(x) in the right hand side of the equation. Actu-

ally, this is the critical case to derive the energy estimate

by the method employed for (TM )f . Applying the same

method as derived the energy estimate of (TM )f , we ob-

tain only estimate of which the right hand side increases

as t increases. Here, we need to make use of degeneracy

of the coeécients much more carefully than the previous

case. Consequently, this reduction does not work for the

simpliåed system of [4].

Remark 2 In [2], Kawashima and Shibata studied a

quasilinear dissipative hyperbolic system arising in the

thoery of viscoelasticity, and showed exponential decay

of the energy. In contract with that system, the strict

hyperbolicity of Pu[u] is violated as t!1 and it will be

diécult to derive such a fast decay in our systems. Our

reductions have similar structures, and we shall describe

about (TM)f in the most detail.
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