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Abstract: - In this study we examine schemes for the 1D inversion of Time Domain 
Electromagnetic (TDEM) Data. We conducted several model tests using conventional 
techniques, and we also included in our study a re-weighted least squares dumping 
technique. The performance of the tested techniques is compared by means of synthetic 
examples for the case of data-sets with erratic data points which is of particular practical 
interest. Further, tests with field data are also included. Results indicate that the re-
weighting least squares dumping technique gives more satisfactory results when outliers 
exist in TDEM data sets. 
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1 Introduction 
TDEM soundings are widely employed 
in Geophysics for mineral resources 
investigations, geothermal and 
groundwater studies. Several methods 
for the 1-D inversion of TDEM data 
have been proposed in literature [1], [2], 
[3]. 

In order to investigate the 
performance of 1D inversion scheme 
when TDEM data sets have outliers, we 
applied two of the most widely used 
techniques, ridge regression and 
Occam’s inversion. Further, tests were 
also conducted using a re-weighted least 
squares dumping technique. After 
several tests with models, the results 
indicate that the last tested scheme, 
provided better results than the two 
conventional techniques. Provided that 
the interpreter chooses the right number 
of layers, the algorithm automatically 
isolates erratic data by locating them and 
attributing to them small weights in 
order to decrease their importance 
during the inversion procedure. 
 
 
2 Erratic data sets 

In every day’s practice fieldwork yields 
with large data sets. When there is low 
level of noise, or when noise is normally 
distributed, all conventional methods 
give satisfactory results. But when there 
are data sets with erratic data points, 
then usually conventional methods fail 
to reveal a model close to reality, 
regardless the small misfit errors. 

Outliers can occur either due to 
systematic error in the configuration of 
the instrument or due to noise, either 
geological, or, most of the times, man 
made. 

One way for tackling this problem is 
to carefully examine the data-set and 
remove outliers manually. This 
technique however is based on the 
interpreter’s expertise and can become 
quite time consuming when large data-
sets are involved. 

Further, automated smoothing -
denoising techniques can be applied. 
Yet, these techniques lack physical 
insight and may lead into the loss of 
important information, or even worse it 
can lead the system to a solution that is 
mathematically valid but geologically 
unacceptable.  
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An alternative technique for 
eliminating outliers is to use a re-
weighted least squares scheme. 
Techniques based on such schemes can 
reject indirectly outliers by assigning to 
them small statistical weights during the 
inversion procedure. The main 
advantage is that the technique is 
embedded within the inversion 
procedure and the assigned weights are 
decided by the iterative testing of the 
goodness of fit of the individual 
modeled data to the field measurements. 

In the next section we will introduce 
such a scheme, proposed originally from 
Morelli and LaBreque [4] for the 
geoelectrical technique and applied to 
the 1D inversion of TDEM data by [5]. 
 
 
3 Inversion schemes in 
TDEM 
Considering a measured data vector d 
the inverse problem seeks to find the 
model vector m representing the 
subsurface parameters for which 
d=f(m), where f is the forward modeling 
operator. By solving the system in least 
squares sense, we are trying to minimize 
the misfit error, given by the 
equation .        (1) Am)(dAm)(dq T −−=
In non-linear inversion, the procedure is 
iterative, and the correction of the model 
for the kth iteration is given by 
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where ATA is the generalized Jacobian 
matrix, and the new model is given by 
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3.1 Ridge regression 
The inversion of the generalized 
Jacobian matrix for the TDEM case is 
ill-conditioned. To tackle these type of 
problems Marquardt [1] used ridge 
regression proposed by Levenberg [6]. 
In ridge regression the purpose is to 
minimize the misfit q, under the 
constraint that the solution dm is 
bounded by a constant quantity, say ct, 
so that  

ctdmdmT < ,          (3) 
where ct can be the data noise level. 

Combined minimization leads to the 
iterative model correction equation 
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where I is the unit matrix and λk is the 
lagrangian multiplier. The above 
technique is routinely used for 1D  
interpretation of TDEM data. 
 
 
3.2 Smoothness constrain 
Constable et al. [2] proposed a 
smoothness constrained inversion 
scheme, where resistivities of layers are 
allowed to oscillate smoothly between 
extreme values but layer thicknesses are 
fixed.  
The idea is to find the smoothest model 
which could fit the data in the sense that 
the model should depart from the 
simplest case only as far as necessary to 
fit the data. 
Apart from minimizing q, Constable et 
al. introduced a scheme which also 
seeks to minimize the roughness term R, 
which has the form 

2CmR = ,           (5) 
Matrix C describes the dependencies 
between model parameters 
(resistivities). C will have the form 
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The correction of the model then is 
given by the equation 

k
T

k
1T

kk
T

kk dyAC)CλA(Adm −+= ,(7)
where λk is the lagrangian multiplier. 
 
 
3.3 Re-weighted Least Squares 
Technique 
Karmis [7], proposed a hybridic 
technique for the 1-D inversion of 
TDEM data. It combines the smoothness 
scheme for inverting for the layer 
resistivities and the Marquadt scheme 
for reconstructing the layer thicknesses. 
The misfit function q to be minimized is 
given by 

WAm)(WdWAm)(Wdq T −−= ,      (8) 



where χ2 is the reduced chi-square value, 
defined as 

where W is the deviation matrix. 
Assuming that data noise is uncorrelated 
and independent, W is a diagonal matrix 
with elements Wii=1/σ, σ the mean 
standard deviation. 
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If the value of λk that is found after 
the line search gives a value of ε% 
above threshold, it is considered as the 
optimum value for the k iteration. If ε% 
is below threshold, then a new λk is 
sought, that gives value of ε% equal or 
slightly above the threshold. 

After each iteration the model 
correction is given by the equation 
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where C is a matrix that handles the 
smoothness of the model, similar to the 
one described in the previous section. In literature, there are several 

techniques proposed for multi re-
weighting least squares inversion [9], 
[10]. We examined Porsani et al. [11], 
Labreque and Ward [12] and Morelli 
and Labreque [4] methods, and after 
several tests, it is concluded that Morelli 
and Labreque’s proposal best fitted our 
needs. 

In the case of the re-weighted least 
squares, for a model with n-layers, C 
will be an (2n-1)x(2n-1) matrix, with the 
first n lines controlling the smoothness 
of the resistivities of the model 
(Occam’s smoothness scheme), while 
the rest (n-1) lines allow the thicknesses 
of the layers to vary independently, 
resembling in this way the ridge 
regression method. The matrix C will 
have the form of eq. (10). 

According to Morelli and Labreque 
a trial-weighting matrix is being 
calculated, using the equation 
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and every new element of the weighting 
matrix is obtained by the following 
relation
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Starting from an initial model, with 
resistivities and thicknesses of layers, 
and a value of mean standard deviation 
σ, synthetic data are produced, by 
performing inverse Laplace transform 
using the Gaver-Stehfest method [8]. 
The Frechet derivatives are being 
calculated using the perturbation 
technique, and each element is given by 
the equation 

Weighting factors are recalculated 
during every iteration, until the L1-norm 
defined as 
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 becomes equal to 1. 
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=      (11) When the inversion starts, L1-norm 

has high values. After a few iterations 
less and less elements of W are 
changing as L1-norm approaches unity. 
At this time re-weighting must stop; 
otherwise the solution keeps tracking the 
noise of the data. 

where δ is a percentage of the resistivity 
perturbation, e.g. 3%. 

The Lagranian multiplier is found 
using a line search [2]. Eq. (9) is solved 
for numerous values of λk, calculating 
each time the average percent data error 
ε%, defined as 

 
4 Synthetic Examples 

 To demonstrate the effectiveness of the 
re-weighted least squares technique, we 
present examples of 2-layers and 3-
layers synthetic examples, in which 

100%1)(10ε%
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Fig. 1. Left part: Data points in black dots. Theoretical response of re-weighted least 
squares presented in black solid line, and ridge regression in red dashed line. Right part: 
theoretical model in black dashed line, re-weighted least squares in black solid line and 
ridge regression in red dashed line. 
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Fig. 2. Left part: Data points in black dots. Theoretical response of re-weighted least 
squares presented in black solid line, and ridge regression in red dashed line. Right part: 
theoretical model in black dashed line, re-weighted least squares in black solid line and 
ridge regression in red dashed line. 
 
7% normally distributed noise was 
added, and moreover some of the data 
points were manually changed to 
simulate the required outliers. The 
results are compared with those from 
ridge regression for the same models. 
 
 
4.1 2-Layers model 
In figure 1 the synthetic model is 
presented in the right part, with blue 
dashed line, along with the re-weighted 

least squares result, presented in black 
solid line, and ridge regression result 
presented in dashed red line. The 
theoretical data points are presented at 
the left part, with black dots. The 
theoretical response of the re-weighted 
algorithm is presented with black solid 
line and ridge regression response with 
dashed red line. Although both re-
weighted least squares scheme and ridge 
regression results fit the real data 



satisfactory, inversion model from the 
first scheme is closer to the real model.  
 
 
4.2 3-Layers model 
In figure 2 the synthetic model, the 
results from re-weighted least squares 
and ridge regression are presented using 
the same notation as in the previous 
section. Since data have been modified 
to a large extent, we didn’t expect either 
of the schemes to fully recover the 
theoretical model. But it can be seen that 
re-weighted least squares algorithm 
managed to reconstruct the initial model 
in a more exact manner. 
 
 
5 Real example 
We tested the re-weighted least squares 
dumping algorithm with real data 
measured at an area of high man-made 
noise level, near a civil airport radar. 
The measurement configuration was that 
of a coincident loop with a 50x50m 
square loop, and measurement ramp 
time was 80 µsec. The results of the 
inversion using ridge regression and re-
weighting least squares dumping 
technique are presented in figure 3, 
using the same notation as in the 
previous figures. 
As it can be seen from figure 3, both 
techniques managed to fit the real data 
in similar manner. The inversion results 

though, compared with geotechnical 
data from a drill nearby, showed that re-
weighted dumping least-squares 
technique provided a geoelectrical 
model closer to reality.  
 
 
6 Concussions 
We examined commonly used schemes 
for the 1-D inversion of TDEM data sets 
with erratic data points. Further, we 
tested an inversion algorithm for TDEM 
data that automatically isolates erratic 
data points by giving them small 
statistical weight so that the system 
takes them into less account during the 
inversion procedure. 
When data with normal distributed data 
noise are considered, all methods 
perform equally well. But when outliers 
exist into the data sets, simple least 
squares approaches seek to find a 
solution that fits data as close as 
possible, resulting in a model that tracks 
down the noise that contaminates the 
data set. 
On the other hand, by automatically 
assigning small weight to erratic data 
points, re-weighted least squares 
technique tries to find a stable model 
that can be closer only to the points with 
small misfit error. This results into a 
more realistic model, in the sense that 
the reconstruction does not suffer by 
erratic data induced artifacts, though the

 

 
Fig. 3. Left part: Data points in black dots. Theoretical response of re-weighted least 
squares presented in black solid line, and ridge regression in red dashed line. Right part: 
re-weighted least squares in black solid line and ridge regression in red dashed line. 



overall misfit can be higher that the 
other methods. 

The main advantage of the approach 
is that it is fully automated and it treats 
the problem within the inversion 
procedure on the basis of the physical 
parameters. 

Using constrain matrix R creates a 
weak dependency between resistivities 
of layers, leaving the depths to vary 
independently.  

The main disadvantage of the re-
weighted least squares technique is that 
the user must provide the algorithm with 
the correct initial guess about the 
number of layers, a disadvantage that is 
common to all the techniques that invert 
data sets using discrete number of 
layers. 
Overall, we consider the algorithm as 
optimum for routine TDEM field data 
interpretation since it can automatically 
deal with data sets which suffer from 
high levels of  noise.  
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