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Abstract: - This paper discusses a parameter optimization methodology for the synthesis of nonlinear dynamic 
systems.  The method can be interpreted as a special neural network (NN) technique with predefined structure 
and weights (parameters) to be optimized. As such, the paper focuses on the definition of an appropriate 
performance index and on the application of parameter optimization methods in view of the fact that the 
performance index possesses, due to the nonlinear character of the dynamic system, numerous local minima. 
Test cases illustrate the performance of the proposed method.  
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1  Introduction 
The synthesis of nonlinear, passive or active 
(controlled), dynamic systems is of outstanding 
importance for numerous engineering applications.    
      The techniques that are proposed cover a wide 
range of methods, e.g. [1]-[7]. One of the most 
interesting approaches considered, is the 
approximation to nonlinear optimal control based 
on solving a Riccati equation at each point ‘x’, and 
this algorithm is often referred to as the “state-
dependent Riccati equation” or SDRE feedback 
control. In a recent paper linear, time-varying 
(LTV) approximations which are arbitrarily close 
to the true system are introduced. The proposed 
algorithm uses the globally converged solution of 
an “approximating sequence of Riccati equations” 
(ASRE) to explicitly construct time-varying 
feedback controllers for the original control-affine 
nonlinear problem.  

These and other methods provide solutions 
based on already existing algorithms, e.g. Ricatti 
equation. On the contrary, the application of neural 
networks opens this horizon, allowing more general 
synthesis procedures.  

      However, synthesis is generally not an easy 
task. Preceding numerical tests, experience and 
intuition are oft used in order to define the system’s 
nonlinear structure. This situation does not change 
if neural networks are used, as no one knows a 
priori the optimal structure of the neural network 
(number of levels, nodes, etc.). In this context, the 
synthesis of nonlinear dynamic systems remains 
still a challenging problem.  

This paper discusses a systematic synthesis 
design methodology based on the introduction of a 
number of parameters and nonlinear dynamic terms 
and on the application of parameter optimization 
methods. The method as such can be interpreted as 
a special neural network (NN) technique with 
predefined structure and weights (parameters) to be 
optimized. Thus, time simulation and parameter 
optimization methods are used for the computation 
of the optimal weights. 

The paper focuses especially on features which 
can ensure the success of the method. This is 
necessary, in view of the fact that the problem 
possesses, due to the nonlinear character of the 
dynamic system, numerous local minima.  

The above methodology has been already 
applied for a number of test cases, e.g. [8]-[10]. In 
this paper a new application is presented and 
numerical problems are discussed.  
 
2  Problem Formulation 
Let us assume that the system dynamics are 
described by the state space equation: 
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In eq. (1) z denotes the n×1 state vector, A the 
generally nonlinear  n×n system matrix, B the n×m 
control matrix, u the m×1 control and f and w the 
load and disturbance vectors respectively. If, now 
the control vector u is expressed as a function of z 
and of the desired state zD  
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then eq. (1) is written: 
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In the above equation K respectively BK can be 
designed to influence the system’s original 
properties A and performance, independent of the 
realization technology (passive or active) of BK.  
       Consider e.g. a three-dimensional system 
described (Karagiannis [7]) by the equations of the 
form 
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If e.g. u is set equal to  
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then eq. (4) can be written: 
 

3
2
22

211       ,
xxx

xxx
+=

+=
&
&

                                                   (6) 

...)1( 2
22

2
113322113 ++++++= xbxbxaxaxax&  

 
The nonlinear system (6) is the result of intuition or 
previous analyses (term u1) and of a systematic 
{polynomial type) synthesis procedure (term u2). 
The performance of (6) depends now  on the choice 
of the polynomial coefficients ai, bi etc.  
 
3  Problem Solution 
The solution of the synthesis problem depends 
significantly on the appropriate definition of the 
performance index J.  The structure of the proposed 
performance index is explained using Fig. 1. 
      From the typical time response of a state 
variable, e.g. of zi, one may deduct the following 
characteristics:  
− The maximum overshooting Sij of the variable 

zi(t) with respect to a given desired state zD  and 
initial conditions z(t=0)= z0 

 

Dii zzS /)max(≡                                             (7) 
 
− The end-position Zi(T) and -velocity Vi(T) of 

the variable zi(t) at prescribed simulation time T 

with respect to a given desired state zD . 
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the Nelder-Mead algorithm (FMINSEARCH of 
MATLAB), can be successfully used. Else, 
evolution strategy methods have to be applied to 
localize the global optimum. 
 
4  Test Problem 
In this section, the proposed methodology is 
applied to a test problem, not yet included in [8]- 
[22].  

The dynamic system is shown in Fig. 2. Mass 
m2 is connected to m1 through a spring k1 and a 
modulated damper c1.  m2 is excited through the 
spring k2 and the disturbance z0(t). The equations of 
motion of the dynamic system and of the actuator 
(time constant Tact and limit flim) are the following: 
 

 
Fig. 2 Dynamic system 
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u is the control law to be defined.  
      For a first application the (dimensionless) 
values are m1= m2=1, k1=16, c1=k2=0 and the force f  
is applied only on mass m1. The u-polynomial is 
considered to be equal to: 
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For bi=0 the dynamic system has only one 
nonlinearity ( limffc ≤ ), else the nonlinearities (13) 

are also added. flim is supposed to be critical, 
therefore flim<50. 
 
5   Numerical Results 
We demonstrate the proposed method, starting with 
bi=0, z1D= z2D=10 and T=10 sec. The initial a-
values are chosen arbitrary, e.g. 
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Using the ‘fminsearch’ (Melder Nead) subroutine 
of MATLAB, the results shown in Fig. 3 are 
obtained. 
 

  

  
Fig. 3 Results for T=10 sec 

0.0774]-   0.0070-   0.1814    8.8604[=a   
 
These results can not be further improved. The 
algorithm is trapped in a local minimum.  
      If however T is reduced, e.g. T=5 sec then, 
although the starting vector (15) is kept the same, 
the results shown in Fig. 4 are obtained. The 
optimization algorithm leads to an acceptable 
solution. 
 

  

  
Fig. 4 Results for T=5 sec 

1.1476]    0.5996    0.2714    0.5020[=a  
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Noticing that the u-limit of 50 is not fully used by 
the controller of Fig. 4, we repeat the procedure, 
choosing now T=4, 3, 2.5 and 2 sec (Fig. 5-7) 
 

  

  
Fig. 5 Results for T=4 sec 

0.1822]-   3.9638    0.1145-   2.7529[=a  
 

  

  
Fig. 6 Results for T=3 sec 

0.3279]-   4.7999    0.0277-   3.6177[=a  
 

  

  
Fig. 7 Results for T=2.5 sec 

1.0934]-   6.1695    0.5148-   4.7336[=a  
 

  

  
Fig. 8 Results for T=2 sec 

1.2233]    3.7099    7.2369    -2.3771[=a  
 

Having now established a basis for further 
optimization, the algorithm can be opened to 
include more desired states, e.g. zD=10, 7.5, 5. 2.5 
(see Figure 8). For the controller of Fig. 8 we 
obtain finally 
 

 

  
Fig. 9 Results for 

1.2233]    3.7099    7.2369    -2.3771[=a  
 
Exactly the same procedure is applied if both the ai 
and bi coefficients in eq.(13) are considered. In Fig. 
10 we show analogous results. 
      Finally, the synthesis can consider also stability 
aspects. For example the case of Fig. 10 can be 
examined for disturbances of the initial conditions, 
e.g. for 10 ,10 21 −=−= zz &&  (Fig. 11) 
 
 



 

  

  
Fig.10 Results for 

0.2110]    0.3619-   0.0216    -0.1239[
 0.5809]    5.5610    5.2237    0.9595[

=
=

b
a  

 

 
Fig.11 Stability analysis for Results of Fig. 10. 

 
5  Conclusions 
In this paper a methodology for the synthesis of 
nonlinear dynamic systems is presented. The 
method can be interpreted as a special neural 
network (NN) technique with predefined structure 
and weights (parameters) to be optimized.  
 The proposed performance index J depends on 
the observation time period T, which plays a 
significant role for the computation of the weights 
(parameters). If deterministic parameter 
optimization methods are used, as here (Nelder-
Mead Algorithm), a relaxation of T, is absolutely 

necessary.  
 The numerical test presented in the paper 
succeeded in performing the synthesis of the 
dynamic system without difficulties. The results are 
generally encouraging so that the proposed method 
will be further investigated. 
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