
 

Adaptive Video Coding Using Bitplane Modeling And GFA Representation  
 

Paul Bao, Senior Member IEEE    and  Xiaohu Ma 
Nanyang Technological University 

 
Abstract: In this paper, we present a novel video coding scheme based on the adaptive non-uniform bitplane modeling of video 
sequences in wavelet domain and the generalized finite automata (GFA) representation. Unlike the traditional block-based 
motion compensation coding, where a video sequence in GoPs is arranged as I-, P- and B-frames and a motion estimate is 
searched in one or a few reference frames at the fixed or predefined block sizes at a spatial domain metric, in the proposed 
scheme, a video sequence is represented in GoPs as an overall binary image by bitplane modeling the significant coefficients of 
the video sequence within subbands.  The inter-frame, inter-level and inter-bitplane similarities inhabited in the binary image 
are then optimally explored, leading to a compact GFA representation of the bitplane modeled video sequence.  Finally, all the 
transitions in the GFA representation are entropy encoded into a scalable bitstream.  The proposed scheme significantly 
outperforms the H.26X series coding schemes in rate-distortion performance. It could achieve bitrate ranges at 4-5 Kbps and 
15-18 Kbps for QCIF 10 Hz and QCIF 30 Hz sequences, respectively, a target unachievable by even the newly emerged H.264 
standard.   
1. Introduction 

Motion estimate based video coding [1-4], whether in 
wavelet domain or spatial domain, fails to achieve a very 
low bitrate (in the range of 4-6 Kbps for QCIF 10 Hz 
format) with minimum motion compensation.  Without 
motion compensation, however, the visual perception and 
the objective quality of the video tend to be very poor and 
unacceptable for most applications. This is mainly due to its 
incapability to explore all the potential similarity 
(redundancy) inhabited in a video sequence.  The motion 
estimate could only explore the similarities between an 
artificially selected reference frame (I- or P-frame) and other 
frames at the fixed size ( 1616× ) of macroblocks.  
Furthermore, the similarity is measured only inter-frame by 
a metric. Consequently the scheme based on this strategy 
would fail to explore and capture the pairwise inter-frame 
similarities in blocks of variable sizes.  It also fails to 
capture the inter-bitplane transformation-based similarity, 
which usually forms the major contribution to the 
redundancy.  In order to significantly improve the bitrates 
while attaining an acceptable visual quality or PSNR 
measurement, all the potential similarities in a video 
sequence should be defined and best possibly explored.   

In this paper, we present a GFA modeling based video 
coding scheme aimed at optimally exploring all the 
similarities implicitly inhabited in video sequences, in 
particular, the transformation-based inter-bitplane similarity.   
The GFA modeling of the video sequences is capable of 
optimizing the rate-distortion performance of the proposed 
video coding.  
2. Bitplane Modeling For Video 

The GFA presentation of the video sequence in wavelet 
domain seemingly facilitates an optimal exploration of the 
generalized similarities.  The GFA modeling takes full 
advantages of the binary fractal similarity of the video 
sequence in wavelet domain to form a Generalized Finite 
Automata (GFA)-based compact representation of video 

sequence.  In this model, the interlevel (wavelet), inter bit-
plane and interframe fractals in a GoP would be fully 
explored and the GFA will be entropy and streaming 
encoded at very low bitrates while retaining an acceptable 
perceptual quality of video.  
2.1 Adaptive Non-uniform Quantization   

Aiming at facilitating more spectrum redundancy to be 
captured in the bitplane model, we analyze the non-uniform 
quantization of the coefficients from the perspective of the 
Generalized Gaussian distribution. Consider a non-uniform 
quantization for coefficients as shown in figure 3.  For 
simplicity, we only show the 4 most significant bits of the 
quantization. We may observe from figure 3 that the first 
two significant bits of the coefficients in the green interval 
complement to each other; furthermore the 2nd and 3rd 
significant bits of the coefficients in the red interval and 
equal to each other and finally the 2nd , 3rd and 4th significant 
bits of the coefficients in the blue interval equal to each 
other. Thus we can quantize the coefficients non-uniformly 
so that most coefficients have complement first 2 significant 
bits, equal 2nd, 3rd and/or 4th bits, facilitating subsequently a 
compact GFA representation of the video for an excellent 
rate-distortion performance. Obviously, the non-uniform 
quantizer so defined may lead to a larger quantization error 

Qe . We would like to seek a quantizer Q and a similarity 
error modelσ  (to be explained in section 4.1) so that the 
overall distortion is minimized   
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where ),( σQD  and ),( σQR are the overall distortion 
and bitrate corresponding to quantizer Q and error model σ  
and TR  the target bitrate.   This minimization problem can 
be formulated as the Lagrangian optimization on the cost 
function   
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However, it can be very time consuming to search for the 
quantization and error model parameters that minimize the 
cost function J .  For each combination of the quantization 
and error model parameters, GFA modeling, coding of the 
basic blocks and entropy coding of GFA would have to be 
performed to obtain the corresponding rate and distortion.  
Due to the complexity for the calculation of the rate and 
distortion, the evaluation of cost function J for all the 
possible combinations is apparently impractical and an 
empirical approach in correlating the quantizer Q with the 
rate-distortion performance is essential for the bitplane 
modeling and the subsequent GFA representation. 

It is observed that the distribution of wavelet 
coefficients of a large set of images and video sequences can 
be adequately described by Generalized Gaussian 
distribution (GGD) with the shape parameter ,β ranged in 
(0.5,1). With the GGD which adequately describe the 
distribution of the wavelet coefficients, we can design the 
non-uniform quantizer aimed at optimizing the rate-
distortion function (1) empirically. Different from the 
traditional goal of the quantizer for the data compression 
where the reconstruction values and quantization bins are 
selected so as to minimize the average distortion, the 
principle goal of the quantizer here instead is to find the 
reconstruction values }ˆ{ˆ Q

iyy = and quantization bins 

iR mmi ,,1,0,1, LL−−=  ( m  levels on each side plus 
a zero-zone bin) that minimize the final coding distortion 
comprised of the quantization error and the modeling error.    
      

 

 

 

 

 
Figure 3. Non-uniform quantization for bitplane modeling 
 

From the analysis on the quantization bitplane 
correlation (figure 3), we may design the quantizer 
hierarchically instead of sequentially as follows. We start at 
the initial range of all the positive coefficients (level-1) by 
partitioning the range into two (unequal) level-2 regions and 
proceed to the consequent levels iteratively. At level- i , we 
partition each of the level- i  regions in into two level-( 1+i ) 
regions until we reach level mr log= . All the regions on 
level r  will then form the quantization bins and their 
centroids will be the reconstruction values, respectively.  
Since we aim at promoting the similarities between the 
bitplanes in the bitplane model, we would like to partition 
the regions resulting in the bitplane similarities under a 

given error modeling.  At level 1=i , we partition the 
region )1(R (the range of the positive coefficients) into two 
level-2 regions )2(

1R and )2(
2R  so that the number of 

coefficients in )2(
2R   
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Similarly, we partition region )2(
1R into two level-3 regions 
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and partition )3(
1R  into two level-4 regions )4(
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so that  
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Since the quantization of the rest of regions is 
insignificant to the subsequent GFA modeling, we apply the 
uniform quantization to these regions.  The centroid 
reconstruction values iy  for the quantization bin )(r

iR are 
calculated as 
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The negative coefficients are quantized in a symmetric ways 
and zero coefficients are kept as zeros. The resolution of the 
quantization is )12log(log1 +==+ mNr .  
3. GFA Modeling of Binary Images 
3.1 Genealogy graph representation of GFA 

A genealogy graph is graph where all the nodes are 
classified by their characters into different generations.  In a 
GFA genealogy graph, nodes are classified by the sizes of 
the subimages they represent: the original image sized at 

mn× is classified as the generation zero, represented by 

root; an image sized at 
kk

mn
22 ×

×  is classified as generation 

k ; an image represented by a leaf node will have size 
911× . 

3.2 Transition  
An edge in the genealogy graph represents a GFA 

transition, labeled either by a triplet },,{ tij , where i and 
j are quadrant indices and t  the transformation, a 

quadruplet },,,{ tsqs ti , where ,is q and ts represent the 
in-state, quadrant and to-state, respectively or a septuplet 

},,,9,,,{ tyxsqs ti ,where ),( yx represents the motion 
vector and 9 is the transformation index for the motion 
estimate. The quadrants are indexed as 0,1,2, and 3. A 
triplet },,{ tij , where ,ji <  represents a self-transition 
from quadrant j to quadrant i  with transformation t , 
implying that quadrant j can be derived from quadrant i  
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(refer to the self transition on state 2 in figure 4). A 
quadruplet represents a transition from the current state (in-
state) to one of its child states.  A septuplet transition is an 
edge between the states on the same level (red edges in 
figure 4) and represents a motion-estimate transition.  A 
transition from the current state to one if its grandchildren 
states on the genealogy graph (pink edges) indicates that the 
corresponding quadrant of the current will be recovered by 

g2 replications of the to-state, where g is the number of 
generations between them.  The multiple transitions from an 
in-state to the same to-state (subimage) will be represented 
by a single edge with the grouped transition parameters. 

 
Figure 4. GFA modeling of the chessboard 

4. Experiment 
The preliminary results on the carphone sequence have 
achieved a rate at 5 Kbps for 10 Hz or 18 Kbps 30 Hz with 
PSNRs ranged between 29-33 dB, respectively, showing an 
excellent potential in achieving the targeted performance by 
the proposed video coding scheme.   
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Figure 5. Comparisons between the GFA scheme, H.263+ 

and H.264 JM-6.1e for QCIF Carphone at 8Hz 
 

 
Table I: Rate-distortion 

 Carphone 
PSNR 32.16 31.94 29.93 29.48 28.99 28.48 
CR 70.56 83.54 215.23 257.62 314.83 462.20
Bit-rate (8 Hz) 33.67   28.44 11.04 9.22 7.55 5.14 
Bit-rate (30 Hz) 126.27 106.65 41.39 34.58 28.30 19.27 

 
6.  Conclusion 
We propose a video coding scheme using the bitplane 
modeling and GFA representation aimed at optimally 
exploring interframe, interlevel and interbitplane similarities 
inhabited in video sequence. The proposed scheme 
significantly outperforms the H.26X series coding schemes 
in rate-distortion performance. It could achieve bitrate 
ranges at 4-5 Kbps and 15-18 Kbps for QCIF 10Hz and 
QCIF 30Hz sequences, respectively, a target unachievable 
by even the newly emerged H.264 standard.  Numerous 
multimedia communication applications, previously 
unpractical, would be envisaged with this supremacy in 
bitrates. 
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Figure 6. Reconstructed Carphone  (PSNR=32.9752 & 
34.32 Kbps 8Hz) 


