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Abstract: We consider a dynamical system determined by a finite family of smooth vector fields. By using vari-
ational techniques, we obtain the equations of motion and the corresponding normal curves. We approach the
problem as the sub-Riemannian geodesic problem on a step-2 nilpotent Lie group and present a detailed study for
distributions of vector fields of order two and three, which lead to orthogonal Lie groups of dimensions three and
six respectively. For the later case we compute the unit sub-Riemannian sphere and the wave front.
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1

Nonlinear dynamical systems defined by means of fi-
nite families of vector fields have been studied in both
the theory of dynamical systems (e.g. [1], [2]), and
the differential geometric control theory, see for in-
stance [3] and [4]. More recently has been shown
that systems defined by a distribution of smooth vector
fields determine intrinsically a geometric structure on
the underlying manifold that goes under the name of
singular, sub-Riemannian or Carnot-Caratheodory ge-
ometry, and provide a natural framework for studying
certain problems in physics, see for instance [5], [6]
and [7]. Some general aspects of the sub-Riemannian
geometry for distributions of arbitrary degree on step-
2 nilpotent Lie groups are discussed in our forthcom-
ing paper [8].

We study in this paper, a nonlinear dynamical sys-
tem given by means of a distributidx of smooth vec-
tor fields{Xy,..., X,,}. The flow of such a system
is given by the solution of the nonlinear differential
eqguation

Introduction

¢=uX1(q) + -+ upnXn(q), (1)

whereu = (u1,...,uy) is avector valued measurable
and bounded function and the state variaplelongs

to certain smooth manifold. When considering

as the control parameter one can think of (1) asm
trolled dynamics onM, and use the control theoretic
techniques for deriving the properties of the flow. In
contrast, we approach the problem from the point of

view of variational calculus with non-holonomic con-
straints.

Apart from this introduction the paper contains
three sections, in section 2 we derive the equations
of motion in the standard way, i.e. through Euler-
Lagrange formalism. In section 3 we present first a
general idea about a hierarchy of dynamical systems
determined by means of non-holonomic constraints
defined by families of non-integrable 1-forms. These
set of ideas were presented by R.W Brockett and L.
Dai in [9]. We shall pursue the study of such hi-
erarchy elsewhere. We then continue establishing a
relationship of the dynamical system with the sub-
Riemannian geodesic problem for the case of step-2
nilpotent Lie groups. In section 4 we integrate explic-
itly the extremal equations for the normal geodesics
and discuss in detail some low dimensional cases, pro-
viding, in particular, a parametrization of the sub-
Riemannian exponential mapping. At the end, we
consider the sub-Riemannian unit sphere and the wave
fronts for the(3,6) case, some commented pictures
for level surfaces of these geometric objects are pre-
sented.

2 The Equations of Motion

Assume thatM = IR™ x IR with coordinatesy =
(z,y), and assume also that there is a sufficiently
smooth vector valued functioch= (1, ...,&,) such
the dynamical system is written as follows
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= u )
= (u,§). (3)
equation (1) directly implies
0 o0 .
Xi_ (971131—'_51@1_ 1,...,n

We consider the distributioh = {X1,..., X,,}. It
is well known thatA together with all its Lie brackets
generate a Lie algebra that we shall denotg by

If £ is analytic then it is given by its Taylor series
expansion around the origin as follows,

1 0v¢;
G0) =Y 28
v>0

v

r=

wherev is the multi-index(iy, . . ., i5,), with nonneg-
ative entriesy! = i1lig! -+ - i, !, 2¥ =2} -+ - zl», and

al/ f— all .« e aln
oxv Oy Oz,

The non-zero Lie brackets

Xij = [Xi, Xj] = Fi;0y, i # j

determine a family of analytic functions;.

Let G be the simply connected Lie group associ-
ated with the Lie algebrg, in such a way that th&;
areleft invariant vector fields. For each € G one
defines on each plan&(q) = span{Xi,..., X,,} a
smoothly varying inner produgt, -) 5 4) by declaring
the vectors X;(¢)} orthonormal. An absolutely con-
tinuous curvey : [0,t,] — G, is said to behorizontal
providedq(t) € A(q), almost everywhere.

We shall consider the variational problem 6h
consisting on the minimization of the kinetic energy
action:

So=7 [ I at, @

in the class of horizontal curves.
As customary, the standard variational method
consists in the study of the Lagrangian

L=2W@ P+ -6 ©)

The case for whicthy = 0 is usually called the abnor-
mal or singular case. Foyy # 0, we get the normal
case for which we can sa = 1. An easy but lengthy
calculation gives the following

Proposition 2.1 The Euler-Lagrange equations for
the normal extremals are

F=ANFz, y=(z) A=0, (6)
whereas the abnormal extrema satisfy

Fz=0.

It is evident that in the normal case the Lagrange pa-
rameters\; are constants of motion, and for the even
dimensional case there are no abnormal extremals.

3 The sub-Riemannian geodesic
problem

The Lie algebra obtained from bracketing the distri-
bution A is in general infinite dimensional and it is
determined by the analyticity of functiaf In this
work, we consider finite expansions around the ori-
gin, approach that fits into the hierarchy introduced
by R. Brockett and L. Dai in [9], for analyzing the
nonlinear effects of mechanical systems. In the afore-
mentioned reference, the authors consider polynomial
vector fields, which can be seen, as finite Taylor series
approximation of analytic vector fields, through par-
ticular examples they study the hierarchy and call the
subsystem = u the “level” 0. The higher levels of
the hierarchy essentially correspond to the powers in
the truncated Taylor series.

We shall pursue the study of such hierarchy and
its implications in both dynamical systems and sub-
Riemannian geometry elsewhere. Here, we want to
consider in detail the first level only, and to show how
this problem can be solved using step-2 nilpotent Lie
algebras. For the first level case, the polynomigdls
are linear and we can select as the family of non in-
tegrable formgxz; dz;}, for i < j. There are exactly
n(n — 1)/2 of these forms.

Similarly, we could add complete differentials
and obtain the more symmetrical choi¢e; dx; —
xj dx; }. We select for this work this last choice, since
the corresponding vector fields turn out to be the left
invariant vector fields of the Lie group associated to
the Lie algebra resulting from.

At this level, trigonometric functions are suffi-
cient to express the solutions of the extremal problem.
Higher levels are much more complicated in a gen-
eral approach and only some particular cases can be
solved, for which elliptic and hyperelliptic functions
arise in certain settings, see for instance [9], [6] and

[71.

In what follows we shall present the general set-
ting, let G be a step-2 nilpotent Lie group of dimen-
sionn(n+1)/2,andletA = {X,,..., X,,} be arank



n, bracket generating and left invariant distribution on
G. We assume thafXy,...,X,} is a nilpotent ba-
sis for A, with order of nilpotency one, that is to say,
adk (X;) = 0, forall k > 1. Furthermore, we
assume thatXy, ..., X, together with the non-zero
Lie brackets

Xij = [Xi,Xj], 1<i<yi=2,...,n, (7)
determine a basis of left invariant vector fields for the
Lie algebrag of the group. The Chow-Rashevskii's
theorem guarantees that any two elemegits; € G

can be connected by an horizontal curve, i.e., an
arc-length parametrized absolutely continuous curve
g : [0,T,] — G satisfyingg(0) = g;, g(Ty) =

g, andg(t) € A(g), a.e.. The class of horizontal
curves shall be denoted ly.

As mentioned in the introduction, a sub-
Riemannian structure on the group is naturally
defined by declaring the vectots:(g),..., X, (g)
orthonormal, in order to define an smooth vary-
ing inner product(-,-), on each planeA(g)
spaf{ X1(g), ..., Xn(9)} The sub-Riemannian
geodesic problermonsists of the minimization of the

length functional
Tg
[ it ar

on the clasgt. Incidentally the sub-Riemannian dis-
tance

{(g)

d(gi,95) = gg};{f(g) | 9(0) = gs, 9(T,) = g5}

is well defined and finite. It reduces the amount of cal-
culations the consideration of the functional of energy

Ty )
/0 LI dt.

instead of the functional, both variational problems
are equivalent. Furthermore the orthonormality of the
vector fields implies

E(g)

(u1 X1(g) + -+ un Xn(g),
urX1(g) + -+ unXn(9))
u%+~-+ui: 1.

[l

At the level of the cotangent bundl& G the vari-
ational problem can be tackled in a coordinate-free
fashion, see [8]. However for the purpose of writing
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down the trajectories in the base manifold it is neces-
sary to select coordinates. We shall consider coordi-
nates given by pairg = (z, z) € R" x s0,,. In these
coordinates the nonholonomic constraints

g(t) = ui Xi(g)
=1

yield the following expression for the vector fields

0 0

furthermore, the skew-symmetric matrixis subject
to
(8)

2ij = i‘i :L'j — .i'j ZTi.

The problem’s Lagrangiag takes the form

1~ o . .
)\02; Ty + — xix; + .’L’]l‘z)
1=

This variational problem is known in the literature as
the Gaveau Brockett problensee [5]. Two situations
can occur. Eitheiy = 0, which leads to theingular
or abnormalcase. The second situation corresponds
to Ag # 0, the so calledhormalcase. In this last case
we can sebg = 1, without loss of generality. In this
problem, however, the second case contains the first,
and therefore we will consider here only the normal
extremals.

Let A = (\;;) the skew-symmetric matrix whose
entries are the Lagrange multipliers. A direct calcula-
tion yields

> i (5

i<j

Proposition 3.1 The Euler-Lagrange equations for
the £ are written as follows

(9)
(10)

© = Awu,

A =0

The above equations lead us to the conclusion that
the )\;; are constants of motion and that

d

dt

we obtain therefore that the initial velocity compo-
nentsz — Az To constitute a set ofr con-
stants of motion. The: initial conditionsu” (0) =
(u1(0),...,u,(0)), together with thex(n—1)/2 con-
stants);;, « < j provide a complete set of integrals

(¢ — Az) =0,
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of motion for the system, that guarantee the integra- (x(0),z(0)) = (0,0). We shall assume also that
bility of the system by quadratures, in conclusion the (z,z) is the projection of a normal extreméd, A)

integral curves are given by with A a constant skew-symmetric matrix satisfying
the assumption written above, and we shall denote
u(t) = exp(tA) u(0). u(0) = up. We have that

Since A is a constant matrix, we can explic-

. . . 1
itly calculate the solutions by means of the classical _ Z = (et — 1)m.(A)ug, and

Lagrange-Sylvester theorem. Recall that the rank of Lk

A is always an even number, that the nonzero eigen- HEo )

values are purely imaginary and appear4npairs, r = Z — (eM ' — 1)m(A)ug
and thatA can always be block-diagonalized. For une(o—foy) ME

simp[licity, for the remaining of the paper we shall

take the following Htmo(A)uo,
Assumption. For n even we shall assume
thatA is a nonsingular skew-symmetricx
n constant matrix having all its /2 eigen- ] )
values different For odd we shall assume 3.1 Low dimensional cases
that A has only one eigenvalue equal to
zero, and that the other non-zero eigenval-
ues are all different.

for n even and odd respectively.

We now specialize the results to the cagses 2 and
n = 3. In both cases we assume, as before, that)
is a geodesic arc, with initial poiri0, 0).

It should be mentioned that degenerated cases are im-(2,3)-Case. The Heisenberg algebralhis case cor-
portant and can be studied by standard limit proce- responds ta: = 2, and leads to the three dimensional

dures. In any dimensioa shall denote the spectrum  Lije algebra given byX;, X, and the nonzero bracket:
of A, andr shall denote its characteristic polynomial.

Eachuy € o determines its corresponding Hermitian (X1, Xo] = X9

projector It has been widely studied since the pioneering paper

1 by R. Brockett [10]. In this caséu, A) € IR? x 509,
TR(A) = T (1r) H (A = Tpj). and)\;> # 0. In consequence
B ke
In the odd dimension, the projectag(A) correspond- 1 .
ing to the eigenvalu@ writes as follows z(t) = )\Tz( sin (Ar2t) 1
1 B (cos()\;zt) — 1)A> o,
mo(A) = — IT a-1p). 12
7 (0)
15 €(o—{0})

(3,6)-Case. This case corresponds to = 3, it

has been studied, to some extent, by W. Liu and

H.Sussmann [11], O. Myasnichenko [12] and others.

exp(tA) = Z e (A), and It consists of the six dimensional nilpotent Lie algebra
given by X, X5, X3 and the nonzero brackets

The Lagrange-Sylvester formula yields

MrET

exp(tA) = > etrm(A) + mo(A),
jin€(o—{0}) (X1, Xo] = X1, [X1, X3] = X3,
[X2, X3] = Xos.
for n even and odd respectively.

We shall derive now explicit formulee for the sub-
Riemannian geodesics of the system in terms of the
formulas foru andA of proposition 3.1.

We shall now assume théat,z) € R" x so, P A20 4 A2, 4 A2
is a geodesic arc defined in certain interj@l77], \/ 1277 el

V (—tr(A2)/2). (11)

(with  a column vector), and with initial conditions

In this case(u, A) € IR? x s03, and the matrix\
503 has eigenvalueg§ A, —i\, 0} with




ThusA satisfiesA\(A? + A\2T) = 0, and

z(t) = <tI — (cos(At) — 1)%

2
+ (M- sin()\t))ﬁg> ug.

4 Sub-Riemannian geometry associ-
ated to the structure (G, A)

Let [0, 7] be a sufficiently small interval, and let—
(g(t),u(t)) be a trajectory of the Gaveau-Brockett
system, the geodesics emanating fr@f®), are given
byt — Exp(t,u(0)).

Let p > 0, thewave frontof radiusp emanating
from ¢(0), is defined as

W, = Exp(p,-),

the sub-Riemannian sphets, of radiusp and center
g(0) is the set of points o with sub-Riemannian
distance tgy(0) exactlyp, clearlyS, C W,,.

4.1 The exponential mapping

Let us consider the initial conditiog(0) as the iden-
tity element of G, and the co-vector$u(0), A(0)).
The exponential mapping can then be written as fol-
lows

Rn(n+1)/2
(u(0), A)

N Rn(n+1)/2

I

((u(0), A), zij (u(0), A)).

—

Sinceu? + - - - +u2 = R?is constant, we can write

u%_l(()) = Ri CcOS (bi, and UQi(O) = Ri sin (ﬁi,

fori =1,...,|n/2], clearlyu,(0) = R, )+ forn
odd. But then

[n/2]+1

> RI=FR,
=1

and R, /2)+1 = 0 for n even. Thus, the momentg
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(3,6)-Case.As we mentioned abov&; and R, can
be parametrized by spherical coordinates as follows
Ry = Rcos andR; = Rsin @, therefore

u; = Rsinfcos¢ = Rqcosg,
up = Rsinfsin¢ = R sin ¢,
uz = RCOS@:RQ:RL%J—FI#O‘

with 6 € [0, 7] and¢ € [0, 27].

For the parametrization of the momentg, let
us recall that the Lie algebras is generated by the
following 3 x 3 skew-symmetric matrices

p1 = —ez2ANes, ug =ep Nes, uz =e1 Aea.

By using the basi$u1, p2, us3} we have the mapping

©:s03 — IR,

i + Topo + x3pu3 — (21,22, x3)

which is a linear isomorphism and clearly satisfy

¢[A, B] = p(A) x ¢(B),

here x denotes the standard cross productlRA.
Hencey is a Lie algebra isomorphism. Furthermore,
for all R € SO3 we havep(RART) = Rp(A).

Equation (11) is equivalent t& = ||¢(A)||?, and
we take spherical coordinates

A2 = —Acosa,
A3 = Asinacos [,
A93 = —Asinasinf,

with o € [0, 7] andj € [0, 27]. The parametrization
of the exponential mapping

(R,0,¢7A,O(,,6) — (.CC,Z),

with z = (1‘1,1‘2,33‘3),,2 = (212,213,Z23), is now
complete in terms of the geometric invariants of the
problem.

Observe that we can always filtl € SO3 such
that RART is equal to\pq, Ao, OF Aug. In this sense
we can distinguisiprivilegeddirections given by vec-
tors(A,0,0), (0,\,0) or (0,0, ), depending on a se-
lected rotation axis associated with

can be parametrized in terms of spherical coordinates
for the R;.

The parametrization of the momenkg; in the gen-
eral case is by far more complicated, to our knowledge
there is no a general procedure.

4.2 Small radii spheres and the wave fronts

The wave front is defined as the set of end points of
geodesics of fixed length, which we take equal to 1.
The unit sphere is the set of points of geodesics at
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