
A Versatile Software Framework for Rapid Development of Signal and
Image Processing Algorithms

STEPHAN RUPP, CHRISTIAN WINTER
Image Processing And Medical Engineering Department

Fraunhofer-Institute for Integrated Circuits IIS
Am Wolfsmantel 33, 91058 Erlangen

GERMANY

{ruppsn,wnt}@iis.fraunhofer.de http://www.iis.fraunhofer.de

Abstract: - Digital signal and image processing are at the forefront of information technology and therefore
frequently integrated into the syllabus of technical studies. The student’s ambition is to come to terms with
the content of the curriculum and gain experience how to apply theory when practicing on lab classes. In this
contribution, we present a framework supporting students in focussing on the functional aspect of the solution
when working on the lectures’ excercises. Within the framework, processing steps are modelled as software
components encapsulating a problem-specific algorithm. Secondary aspects of algorithm development –
such as configuration dialog programming or memory management – are kept off the student and treated
by the framework. Our approach is designed to be independent from any graphical user interface, however
a virtual programming environment is provided, allowing the student to rapidly develop programs as being
assembled as chains of the components. The user simply defines the dataflow as connections between
the software components visually and performs the components’ configuration by means of automatically
rendered settings dialogs.

Key-Words: - Component-based Software Framework, Visual Programming Environment, Rapid Algo-
rithm Development, Signal and Image Processing, Evaluation Platform

1 Introduction and Problem Statement

Digital signal and image processing are at the fore-
front of information technology and are used in a wide
variety of modern electronic devices and information
systems. The multifaceted and continously growing
application fields demand for well-trained computer
scientists and engineers being equipped with pro-
found knowledge concerning technique and method-
ology in this specific domain.

For this reason, lectures in digital signal and image
processing are frequently integrated into the syllabus
of technical studies either to teach fundamentals or
as graduate course – or they act as the substantial
part of specialized studies. Thus, they have a high
significance for university education with increasing
impact.

Applications of computer vision and signal process-
ing are often based on a set of basic and commonly
accepted ideas and algorithms. Thus, when develop-
ing signal processing software, reuse plays a decisive

role. Powerful tools such as software architecture and
design patterns [1][2, 3] aiming at the development of
reusable software (systems) have been evolved from
the software engineering community, however they
are very abstract due to their catholicity and require
certain experience in order to be chosen and applied
right.

On the other hand, the student’s ambition is to
come to terms with the content of the curriculum pre-
sented in lectures and gain experience how to apply
these when practicing on the related lab class. In or-
der to attain this, the students generally do not spend
much interest in writing aesthetic, highly reusable
code, nor are they willing to invest much time on
secondary aspects like configuration dialog program-
ming when working on the lab courses’ excercises.
Instead, they would like to concentrate on the func-
tional aspect of the problem’s solution allowing to
deepen the theory’s relationships accordingly. In ad-
dition, students emanating from fields like physics,

1

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



electrical or mechanical engineering are rarely famil-
iar with the powerful concepts of software engineering
nor do they have the necessary experience to apply
these right, but they surely do have a need for writ-
ing reusable software components in their educational
projects.

2 Related Work

Application frameworks for special domains have
been intensivly proposed in the past years [4, 5, 6, 7].
Such approaches support the user in writing applica-
tions for the specific domain they were designed for
and therefore they lack of catholicity. Thus, their use
in education seems to be very limited.

A more promising approach is faced with the Im-
ageJ environment [8]. It it is designed with an open
architecture that provides extensibility via Java plug-
ins. Custom acquisition, analysis and processing plu-
gins can be developed using ImageJ’s class library in
conjunction with a Java compiler. Despite its power-
ful concept, it is restricted to image-based processing
steps and lacks of the ability to process arbitrary type
of data as required within signal processing and cer-
tain computer vision applications. Finally, neither
a simple user interface for the creation of new plug-
ins is provided nor constructing programs as chains
of the developed algorithms is supported. However,
as expected, ImageJ has recently been used within
education [9] justified by its powerful concept when
dealing with image-to-image algorithms.

Numerous tools supporting rapid algorithm devel-
opment are commercially available. As representants,
we would like to consider Cantata [10] within the
Khoros environment [11] and MATLAB [12]. Can-
tata provides lots of features and supports distrib-
ution of processing steps. The richness of features
induce a complexity that is reflected by the graphical
user interface and is propably hard to handle for stu-
dents in a lab class. Furthermore, Cantata is rather
a visual programming language (VPL) as it provides
visual control structures and state variables rather
than a lightweight graphical user interface for simply
chaining algorithmic steps.

The MATLAB environment is widely used within
education and popular due to its high abstraction

level. However, an intermediate abstraction level
might be more suitable when dealing with algorithm
emanating from the image processing field while
keeping in mind training yielding fully-fledged grad-
uates. In our experience, students or even graduates
with a background in highly abstract, interpreting
languages such as MATLAB often have enourmous
problems on how to implement a certain algorithm
for industrial or medical appliances in a standard pro-
gramming language such as C++, especially when
mathmatical techniques such as decompositions or
simple matrix/vector operations are required or per-
formance is an issue.

3 Contribution

In this contribution, we propose a framework based
on a modular software architecture with distinctive
processing steps being represented by software com-
ponents. The software component itself is a computa-
tional unit [1] and represents ”a coherent package of
software that can be independently developed and de-
livered as a unit, and that offers interfaces by which
it can be connected and exchanged with other compo-
nents to compose a larger system” [13].

Our approach enforces modularity due to its design
and supports the student in writing reusable soft-
ware components with a problem-specific algorithm
encapsulated in a plugin. Its underlying form is tex-
tual and requires compilation, so that the student is
not decoupled from problem-specific implementation
details, but is still confronted with issues that are
of high importance for the every-day work of pro-
fessionals like code performance, memory utilization
and source code documentation.

The framework is designed to be independent from
any graphical user interface, but provides abstract
interfaces in order to allow graphical dataflow defin-
ition, user interaction (i.e. for selection of region of
interests) and component configuration in combina-
tion with a visual programming environment (VPE).
Thus, we describe a VPE that provides a convenient
way to easily and rapidly develop programs out of
chains of these plugins (figure 1).

A reflexion mechanism is realized by the exter-
nal polymorphism design pattern [14] enabling the

2

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



Figure 1: A screenshot of our VPE for the presented frame-
work showing the graphical dataflow defintion as well as three
types of monitors: visualization of images (partially occluded),
an interactive segmentation monitor (mid) and a textual mon-
itor presenting numeric values (right).

automatic generation of configuration dialogs along
with descriptive help for the VPE user. Additionally,
the same design pattern is applied to the data ex-
change mechanism that requires no prior knowledge
of the data’s type, so that every type – regardless
if it belongs to third-party or an own library – can
be used directly without writing any adaption code.
Moreover, the data exchange has been designed to
be efficient regarding performance and the system’s
resources with the framework being responsible for
memory managment and holding off (de)allocation
code from the student. Finally, our VPE is equipped
with a plugin wizard that supports the student in
generating code skeletons along with the necessary
compiler project files, so that the newly created, but
functionally ”empty” components can be used in the
framework immediately. In order not to confuse the
student with code generated by the wizard, the gen-
eration gap design pattern [15] is applied in order to
conceal framework code from the user – however the
code is accessible by the student at any time.

4 Methods

In the very beginning of our work, we identified the
main aspects of the software development process

with respect to signal and image processing algo-
rithms. Each of theses aspects yields a requirement
that our framework needs to provide. The results
are summarized in the next section whereas in the
remainder of this chapter, we propose solutions how
those requirements are realizable in a modular rapid
development environment.

4.1 System Requirements

Applications of computer vision and signal processing
often share ideas and algorithms that may already be
available and – in the context of education – should
be taken for granted by the student (i.e. algorithms
for reading, writing or displaying images et cetera).
So, reuse of algorithms is important and demands
for a modular design principle.

In order to support the student in deepening the
lectures’ theory, the framework should prevent him
from being distracted from concentrating on the

functional part of his work. This can be achieved
by certain automatisms provided by the framework,
i.e. for rendering configuration and help dialogs from
the specification of the algorithms’ parameters or
hiding inter-component communication and resource
control by the user.

In addition, the creation of new plugins should be
quickly and easily feasible – ideally without writing
any line of code – however, the algorithm itself re-
quires programming. This demands for a reflex-

ion mechanism providing meta information and
a facility that gathers information about the plugin’s
connection points, the algorithm’s parameters and
dependent third-party libraries in order to automati-
cally generated all the necessary project files and code
skeletons.

4.2 Conceptual Design

From a conceptual point of view, we identify three
basic component types that are related to the funda-
mental tasks almost every signal or image processing
application usually covers. Since an application re-
quires certain data, there must be an entity where
data is created. As soon as the data is available,
the application’s algorithms can start to operate on
it, propably providing intermediate results but finally

3

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



Figure 2: An exemplary topology exhibits the components of
the pipes-and-filter architecture: source (pprReadImage), filter
(pprSplitRGB, pprMergeRGB), sink (pprWriteImage) and mon-
itor plugins (pprMonitorImage, pprMonitorHistogram).

resulting in an output. Conceptually, the algorithms’
input data is transform into output data – either in-
termediate or the final result. Since the application
should perform a certain task, the result needs to
be interpreted, visualized or – conceptually spoken
– consumed. The entities being responsible for cre-
ation, transformation and consumation are denoted
as sources, filter and sinks. Additionally, we define
one more concepts in order to meeting the require-
ments for easy-to-use data visualization and user in-
teraction: a monitor is a specialized filter being able
to create, access and capturing mouse events in a win-
dow of the VPE enabling i.e. interactive selection of
image regions, color picking or just displaying of tex-
tual or graphical signal representations.

Besides these functional aspects, the need for data
exchange between adjacent components induce topo-
logical aspects. A link between two components is
modelled as a channel being attached to the compo-
nent’s communication end-points (ports). It is asso-
ciated with the data type that it intends to transfer.
The data itself is modelled as a token and trans-
mitted over the channels between adjacent process-
ing units. The corresponding di-graph describes the
dataflow between components and defines the topol-
ogy of a program (figure 2).

4.3 Architecture

Both, the functional and topological concepts of the
previous section lead directly to the architectural

IIPort

+ bool IsConnected()

IConfiguration
+ ParamVector GetParameter()

+ RegisterParameter(IParameter&)

+ void Serialize(XMLStream&)

+ void Deserialize(XMLStream&)

+ void OnChange(IParameter&)

IWindow
+ void Hide()

+ bool IsShown()

+ bool IsHidden()

+ void SetSize(uint, uint, uint, uint)

+ void GetSize(uint&, uint&, uint&, uint&)

+ string GetTitle()

+ void SetTitle(string)IOPort

+ void ConnectTo(IIPort&)

+ void Disconnect(IIPort&)

+ bool IsConnectedWith(IIPort&)

+ bool IsConnected()

PolicyInfo
+ string m_strAuthor

+ string m_strPurpose

+ string m_strVersion

+ string m_strCreationDate

IParameter

+ string GetTypeName()

+ string GetLabel()

+ string GetDescription()

+ void Serialize(XMLStream&)

+ void Deserialize(XMLStream&)

IPlugin
+ PluginInfo& GetPluginInfo()

+ vector<IIPort*> GetInputPorts()

+ vector<IOPort*> GetOutputPorts()

+ void Reset()

+ IConfiguration& GetConfig()

+ void RegisterFactory(IWndFac&)

+ bool HasWindows()

+ vector<IWindow*> GetWindows()

+ void Run()

IWndFactory
+ IWindow& Create(UID)

IPort

+ void SetLabel(string&)

+ string GetLabel()

+ string GetTypeName()

+ type_info& GetType()

Figure 3: The framework is designed to be independent from
any graphical toolkit which is attained by a set of interfaces
defining fundamental services.

pipes-and-filters design pattern [16] that instantly de-
termines the system’s fundamental software architec-
ture [1].

4.4 Design and Implementation Aspects

This section is concerned with fundamental design
decision and implementation aspects in order to meet
the requirements discussed in section 4.1. Due to the
limited space, we have to restrict the coverage of de-
sign and implementation details to the fundamental
key concepts of our approach.

Regarding the implemenation, we decided to use
the C++ programming language due to its dom-
inance in industrial and medical image processing
projects, object-oriented character and its powerful
template mechanism supporting generative program-
ming techniques [17].

4.4.1 Interfaces

One of our major concerns when designing the frame-
work was decoupling the frameworks business logic
from any graphical user interface (GUI), so that
everybody is able to use it in conjunction with his
favorite graphical toolkit. In accordance with this,
the framework is built on a set of interface classes,
providing all the services an application may need to
manage the plugins – this includes access to the pa-
rameters and the token types that a plugin requires
or provides (figure 3).

4

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



Generation Gap Design Pattern

ExtensionClass

CoreClass

+ void DoDefinePluginInfo()

+ void DoDefinePorts()

+ void DoDefineParameters()

+void Run()

+ void Run()

- void UserDefinedOperation1()

- void UserDefinedOperation2()

PluginBase

+ void RegisterParameter(IParameter&)

+ void DoDefinePluginInfo()

+ void DoDefinePorts()

+ void DoDefineParameters()

+void Run()

IPlugin

Generated implementation

such as parameters, ports

and plugin information

gathered by the wizard

Extended implementation

(the plugin’s algorithm)

Figure 4: Generation gap design pattern for encapsulating
code that has been automatically generated by the plugin wiz-
ard. The plugin’s specific algorithm is implemented in the
Run() routine that is automatically called by the framework.

4.4.2 Generation Gap

Surprisingly, some framework designers still make use
of macros in order to provide shortcuts for framework
code. The virtual intend is to hide implemenation
details from the user and let the preprocessor ex-
pand the macro definition on compilation [18]. We
think that there are quite better ways to realize this,
since macros are error-prone and hard to debug due
to their lack of type-safety and non-evaluating, tex-
tual replacement of arguments. Especially when the
code is created by a code generator, a more conve-
nient approach will make use of the generation gap
design pattern [15] (figure 4). Powerful tools like the
QT designer [19] or ibuild [20] do apply the genera-
tion gap pattern in conjunction with their code gen-
eration facility - as we do, too.

As already mentioned, we provide a plugin wizard
which supports the user when setting up new process-
ing units (figure 5). Nevertheless, the user can set
up a new policy by inheriting from the appropriate
framework’s core plugin class and customize the sub-
class to the specific needs by overriding/overwriting
and calling the frameworks service methods. Since
no special preprocessor statements have to be placed,
creating a new plugin is as straightforward as creating
a new C++ class with full control by the program-
mer.

To speed up the creation, the wizard collects the
plugin’s name, its communication ports, the para-
meters it is supposed to have as well as pathes for
dependent libraries. Optionally, a description of the

Figure 5: The plugin wizard supports the user when creating
new plugins guaranteeing ease-of-use.

algorithm’s purpose can be obtained. From this meta
information all the necessary code is generated by the
wizard and placed in the core class of the generation
gap pattern. In contrast, the user’s code is placed in
the inherited extension class, which is created by
the wizard too. By this, the details of the framework
are hidden from the user’s eyes so that he is only con-
cerned with ’his’ extension class. Anyhow, the code
is accessible at any time – even on compiler errors or
warnings – and provides type-awareness and main-
tainable code. Moreover, it is on the user’s behalf
to decide if he is interested in the frameworks details
or not. Due to the fact that the framework specific,
generated code is hidden in the core class, the pro-
grammer can concentrate on the functional aspect
meeting the corresponding requirement identified in
section 4.1.

4.4.3 Data Exchange and Automatic Resource Con-
trol

As one of the requirements, data exchange should be
hidden from the user so that he is not messed up
with writing allocation or deallocation code in order
to pass tokens. However, inter-component communi-
cation should still be efficently realized and provide
versality. In order to support the user, the framework
takes responsibility for managing all the resources
that are required in order to transport tokens from

5

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



one plugin to another one. Since one-to-many con-
nections are supported, dispatching the tokens to all
subsequent entities is required. For performance rea-
sons, the tokens being passed to consecutive process-
ing units are not copied, but passed by reference in-
stead. Additionally, the framework possesses the to-
ken’s object for its complete life-cycle and though is
responsible for deallocating its resources.

By providing a simple pointer to a successive
processing unit, the tokens integrity needs to be se-
cured, so that intended or even unintended deleting
of a token’s data can be prevented. For this reason,
a template-based guard class is introduced in order
to control the access to the encapsulated data. Since
the data’s type is provided as template argument any
arbitrary type can be used for inter-component data
exchange:

template <class T> class Token {

public:

Token();

Token(const Token<T>& ptr);

explicit Token(T*& data);

virtual ~Token();

bool operator==(const Token<T>& ptr);

bool operator!=(const Token<T>& ptr);

const T& operator*();

const T* operator->();

T GetWriteAccess();

private:

T* m_pData;

int m_iCount;

};

Whenever the user needs read access to the token’s
data, the * (or ->) operator obtains a constant ref-
erence (or pointer) to the token’s object. Since an
address is returned no time-consuming deep copying
of objects takes place and so, access is gained without
any loss of performance.

Recalling the dispatching mechanism, tokens are
not passed by value, but by reference (pointer) in-
stead. Without any protection mechansims (guard),

a write access to the referenced object would not only
affect the current processing unit, but all the process-
ing units the token is dispatched to. In order to
prevent this sideeffect, the user has to announce ex-
plicitly write access by calling the GetWriteAccess

method of the templated Token class resulting in a
deep copy of the contained object’s data.

Finally, a simple reference counting mechanism
tracks the references to a particular token and in-
dicates the framework that a token’s resources can
be freed as soon as the counter is equal to zero.

4.4.4 Reflexion

In order to focus on the essentials of an algorithm
secondary aspects have to be automated. A reflex-
ion mechanism gathers and provides relevant infor-
mation about a plugin that is used by the framework
to generate configuration dialogs or for performing
semantic checks on connection of plugins.

. Parameters and Dialog Rendering

The parameter’s interface class provides standard-
ised services for getting and setting the parameter’s
value as well as methods for associating its type
with a name and a description of its purpose. This
information is accessed by the proposed VPE in
order to render the dialogs with mapping the types
to GUI elements or utilizing the purpose description
for displaying help (figure 6). All access is realized
by type-safe method calls so that no parsing and
interpretation of additional textual description is
necessary. In order to equip a plugin with a para-
meter, the user simply has to pass an appropriate
parameter object to the plugin’s base class service
routine RegisterParameter(IParameter& ) – or
he makes use of the graphical plugin wizard.

. Persistency

In addition to the former paragraph, the frameworks
implemenation of the parameter’s interface realizes a
generic mechanism for reading and writing a plugin’s
state. For this, the plugin’s base class implementa-

6

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



Figure 6: Configuration and help dialogs are automatically
rendered by the framework enabling the user to simply adjust
the algorithms parameters without touching any line of source
code.

tion offers a service method, that iterates through
all the parameters associated with the plugin and
calls their (de)serialization method depending on
wheter to read or to write. By this, the plugin’s
state can easily transformed into or recoverd from a
XML stream.

5 Discussion And Conclusion

The presented approach proved its worth its applica-
bility in numerous internships, thesis and research
projects at our department. Many of our students
who wrote their diploma or masterthesis were using
the platform in order to make use of existing I/O
and visualization plugins which allowed to concen-
trate on their theme and prevented from wasting time
with implementation effort that does not contribute
to their theses.

Due to its direct access and minimal overhead, our
approach can be gainfully used in lectures as well
and hence, is currently evaluated as demonstration
tool and as development platform for the associated
lab classes.

�

In this paper, we presented a framework based
on a modular software architecture with distinctive

processing steps being represented by software com-
ponents that can be gainfully used in education. Our
approach enforces modularity due to its design and
supports students in writing reusable software com-
ponents with a problem-specific algorithm encapsu-
lated in a plugin. The framework is designed to be in-
dependent from any graphical user interface. It pro-
vides abstract interfaces in order to allow graphical
dataflow definition, user interaction (i.e. for selection
of ROIs) and component configuration.

Additonally, we present a visual programming en-
vironment that supports easy creation and configu-
ration of new – functionally empty – plugins. Sec-
ondary aspects like UI programming or resource con-
trol for inter-component communication are kept
away from the user and are automatized by the
framework. Fundamental plugins for reading, dis-
playing or writing images or – in general – any kind
of signal processing step can be taken for granted by
the students on a lab class, whereas a particular so-
lution for an excercise has to be implemented and
tested in a separate plugin.

This all supports students in concentrating on the
functional part of their work and allows them to
deepen the content of the curriculum as we experi-
ence with our students. In the end, we hope that such
an approach will strengthen the educational effect of
lectures and hopefully result in fully-fledged gradu-
ates with extensive theoretic and practical skills.

Acknowledgements: The research was supported
by the Research Training Group 244 of the German
Research Foundation (DFG). In case of the second
author within the current research subproject A7 of
the Collaborative Research Centre (SFB) 603.

References

[1] Shaw M. and Garland D. Software Architecture. Per-
spectives on an Emerging Discipline. 1 ed. Prentice
Hall, 1996.

[2] Gamma E., Helm R., Johnson R., and Vlissides J. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[3] Buschmann F., Meunier R., Sommerlad P., and Stahl
M. Pattern-Oriented Software Architecture, Vol.1 : A
System of Patterns. 1 ed. John Wiley and Sons, 1996.

7

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)



[4] Vogelgsang C., Scholz I., Greiner G., and Niemann H.
lgf3 - A Versatile Framework for Vision and Image-
Based Rendering Applications. In Greiner G., Nie-
mann H., Ertl T., Girod B., and Seidel H.P. (eds.),
Vision, Modeling, and Visualization 2002. Infix, -,
2002.

[5] Müller T.O., Stotzka R., Beller M., Ruiter N.V., and
Hartmann V. Schneller Aufbau medizinischer Diag-
nosesysteme mit ICE. In Bildverarbeitung für die
Medizin, 2004.

[6] Duret-Lutz A. Olena: a Component-based Platform
for Image Processing, mixing Generic, Generative
and OO Programming. In Proc. of the Generative
and Component-based Software-Engineering (GCSE
’00), October 2000, pp. 13–19.

[7] Rupp S. Generische 3-D-Rekonstruktion von
Hohlräumen aus monokularen endoskopischen Bild-
folgen. Master’s thesis, Technical University of
Hamburg-Harburg, Germany, 5 2003.

[8] ImageJ - Image Processing and Analysis in Java.
URL rsb.info.nih.gov/ij.

[9] Burger W. and Burger M.J. Digitale Bildverarbeitung
- Eine Einführung mit Java und ImageJ. Springer,
2005.

[10] Khoral Research. URL www.khoral.com.

[11] K.Konstantinides and Rasure J. The Khoros soft-
ware development environment for image and signal
processing. IEEE Transactions on image processing,
vol. 3(3), 1994, pp. 243–252.

[12] MATLAB - The Language of Technical Computing.
URL www.mathworks.com.

[13] D’Souza D.F. and Wills A.C. Objects, Components
and Frameworks with UML - the Catalysis Approach.
Addison-Wesley, 1998.

[14] Cleeland C., Schmidt D.C., and Harrison T.H. Exter-
nal Polymorphism. In Proc. of the 3rd Pattrn Lan-
guages of Programming Conference, September 1996.

[15] Vlissides J. Pattern Hatching - Design Patterns Ap-
plied. 1 ed. Addison-Wesley, 1998.

[16] Vermeulen A., Beged-Dov G., and Thompson P. The
pipeline design pattern. In OOPSLA’95 Workshop
on Design Patterns for Concurrent, Parallel and Dis-
tributed Object-Oriented Systems, Oktober 1995.

[17] Alexandrescu A. Modern C++ Design. Addison-
Wesley, 2001.

[18] Wenzel F. and Grigat R.R. A Framework for Develop-
ing Image Processing Algorithms with Minimal Over-
head. 5th WSEAS Int. Conf. on Signal, Speech and
Image Processing (SSIP’06), August 2005, pp. 185–
190.

[19] The QT Toolkit. URL www.trolltec.com.

[20] Vlissides J. and Tang S. A Unidraw-based user in-
terface builder. Proc. of the ACM SIGGRAPH 4th
Annual Symposium on User Interface Software and
Technology, vol. 3, November 1991, pp. 202–210.

8

Proceedings of the 1st WSEAS / IASME Int. Conf. on EDUCATIONAL TECHNOLOGIES, Tenerife, Canary Islands, Spain, December 16-18, 2005 (pp64-82)


