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Abstract.- Autoregressive moving average (ARMA) has been widely used to model processes that generate 
linear time-series. Recent research activities in forecasting with artificial neural networks (ANNs) suggest 
that ANNs can be a promising alternative to the traditional ARMA structure. These linear models and ANNs 
are often compared with mixed conclusions in terms of the superiority in forecasting performance. This 
study was designed: a) to investigate a hybrid methodology that combines ANN and ARMA models; b) to 
resolve one of the most important problems in time series using ARMA structure and Box-Jenkins 
methodology, the identification of the model. In this paper we present a new procedure to predict time series 
using paradigms as: fuzzy system, neural networks and evolutionary algorithm. Our goal is to obtain an 
expert system based on paradigms of artificial intelligence, so that the linear model can be identified 
automatically, without the necessity for a human expert to intervene. The obtained linear model will be 
combine with ANN, making and hybrid system that could outperform the forecasting result. 
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1. Introduction 
 
For more than half century, the Box-Jenkins 
methodology using ARMA linear models have 
dominated many areas of time series forecasting. 
In 1970, Box and Jenkins (see Box et al.,describe 
the method of automatic ARMA model- 1994 
[2]), made ARMA models popular by proposing a 
model building methodology comprising several 
stages: specification, estimation, diagnostic 
checking and forecasting. 
The ARMA (p,q) model for a time series can be 
modelled as: 
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t i t i j t j
i j

tx x eφ θ− −
= =

= −∑ ∑ e+  (1)

Where et is a normal white noise process with zero 
mean an variance σ2, and t=1, … T, being T the 
number of data of the time series. It is assumed 
that the autoregressive and moving average 
parameters satisfy the conditions for stationarity 
and invertibility, respectively. 
The main advantage of ARMA forecasting is that 
it requires data on the time series in question only. 
The problem of estimating the order and the 
parameters of a model such ARMA is an active 
area of research [1][3][4][5]. Modelling linear and 
stationary time series, one frequently chooses the 
class of ARMA models because of its high 
performance and robustness. The selection of a 
particular ARMA model, however, is neither easy 
nor without implications for the goal of the 

analysis. Some disadvantages of ARMA 
forecasting are that:  

• The result of the Box-Jenkins procedure 
depends greatly on the competence and 
experience of the investigators and is 
affected by a strong path-dependence [6]. 
Unfortunately, one frequently observes 
that different models have similar 
estimated correlation patterns, and the 
choice among competitive models can be 
quite arbitrary. Some concern derives also 
from comparative studies in which 
experts, asked to identify a number of 
series, frequently reach different 
conclusions [2][3][4].  

• A further objection to the Box-Jenkins 
procedure for model selection is related to 
the time required to develop the 
identification model, which sometimes 
can be excessively high.  

• It is not embedded within any underlying 
theoretical model or structural 
relationships. Furthermore, it is not 
possible to run policy simulations with 
ARMA models, unlike with structural 
models 

• ARMA models are linear model, and in 
real-word, time series are rarely pure 
linear combination. 
 

Although the application of neural network 
modelling to Box–Jenkins models encompasses 
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two sub-areas, that is, model identification (by an 
statistical feature extractor, perform a pattern 
classification) and forecasting (as a function 
approximator), the scope of this paper will be 
focused in both areas, but using and fuzzy expert 
system for automatic model identification.  
 
2.  Fuzzy Expert System: the Structure 

of the ARMA Model 
 
In Section 1, we have mentioned several 
justifications for an automatic ARMA model 
building procedure. They can be summarized by 
saying that using the Box–Jenkins method on a 
large scale requires both expertise and time. 
Aiming to make the method available to people 
without that expertise, several software vendors 
have implemented automated time series 
forecasting methods, e.g. Mandrake [7], and the 
list in Tashman [8]. However, these approaches 
were not very successful and nowadays, most 
popular statistical package (SPSS, Statgraphics, 
Matlab, etc), require the intervention of the user. 
The goal of this section is present an automated 
way to obtain the structure of an ARIMA model, 
using an expert system working with fuzzy logic. 
What we have to achieve is a program that, on the 
basis of a given number of rules, is capable of 
assigning weights to each so that the series that 
are analysed can be correctly identified. 

For this reason genetic algorithms are 
used to assign weights to the various rules, and 
this is the novel aspect of the current project. To 
date, and as observed above, trial-and-error 
methods have been applied. Fundamentally, a 
visual examination has been made of the 
estimated autocorrelation function (ACF) and the 
estimated partial autocorrelation function 
(PACF)., from which relevant conclusions are 
drawn. This technique, naturally, requires a great 
deal of skill and long practice. On the basis of this 
visual examination, the various models possible 
are identified. An estimate is made of the Φ and θ 
coefficients, and a decision is taken regarding 
which of the estimated models best fits the series, 
using mathematical tests. If there are two models 
fitted equally well by the series, the simpler one is 
chosen. 
 
2.1. Initial rules utilized  
 
Before the learning program starts to test the rules 
fulfilled by each series, a number of simple tasks 
must be performed:  

1.  Obtain the estimated ACF and PACF 
coefficients and the error criterion.  
 
2.   Check that the series is not white noise. If 
95% of the samples fall within the error criterion, 
the series is white noise, the model is classified 
(0,d,0) (where d is the differentiation) and no 
analysis may be undertaken.  
 
3.  Exponential fit of the first terms of the ACF 
and of the PACF. The program attempts to 
determine whether the shape of the ACF and of 
the PACF is similar to that of any of the 
theoretical shapes of the various models described 
above. To do this, an exponential fit is carried out 
on the first terms of the ACF and of the PACF, 
fitting them to an exp(-βx) curve. By these means, 
values of ß are obtained for the ACF and the 
PACF, and these values will be used, together 
with those of the correlation coefficient, to help 
identify the model. 
 
4. Determine the spikes in the coefficients of 
autocorrelation and of partial autocorrelation. In 
fact, if the series is (for example) of the AR(1) 
type, it will present a spike in the PACF. This is 
what is determined in this stage of the procedure. 
As the program is unaware of the type of series 
presented, it checks the number of ACF and 
PACF coefficients that are 70% above the error 
criterion. 
 
5.  Estimate Φ and θ. When this step is reached, 
we still do not know the series type, but it is 
possible to estimate Φ and θ for various known 
types of series, such that we perform an 
estimation of coefficients for the following 
models: 
AR(1)  Estimating the value of Φ1 
AR(2)  Estimating the values of Φ1 and Φ2. 
MA(1)  Estimating the value of θ1 
MA(2)  Estimating the values of θ1 and θ2. 
ARMA(1,1)  Estimating the values of Φ1 and θ1. 
 
6. Test changes of sign in the ACF and the PACF. 

This is performed in order to determine which 
model is best fitted. 
 

2.2. Rules of the expert system 
 

The expert system that is created consists of a 
total of 35 fuzzy rules. Due to space limitations 
imposed on the present paper, we can only discuss 
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a few of these, together with the justification for 
their inclusion. 
 
Rule 1.  If the PACF fall more abruptly than the 
ACF, then the model is AR(p), where p is the 
PACF number immediately above the error 
criterion. 
This rule is suggested by the shape of the AR 
models. In such a model, the ACF fall smoothly, 
while the PACF fall abruptly. The number of 
PACF above the error criterion will be the order 
of the AR model. To determine this, the program 
uses the previously-obtained ß values of the 
exponential fit. The exponential presenting the 
most abrupt change is the one with the highest 
absolute ß value, such that if the ß calculated for 
the PACF is greater than that for the ACF, the 
model will be AR. To determine the order, we 
examine the number of spikes in the PACF. As 
the series are not ideal, but have a component of 
white noise, we only take into consideration the 
PACF that are 70% above the error criterion. 
 
Rule 2.  If the ACF fall more abruptly than the 
PACF, then the model is MA(q), where q is the 
number of ACF above the error criterion. 
This rule is the inverse of the previous one, and 
the explanation is analogous. As before, the series 
is not an ideal one, and so to determine the ACF 
we take into consideration the ACF that are 70% 
above the error criterion. 
Rule 21.  If the estimated Φ1 and Φ2 coefficients 
fulfil the stationarity rules, then the series 
corresponds to the AR(2) model. 
The stationarity conditions for this type of series 
are:  

Φ1 + Φ2 < 1 
Φ2  - Φ1 < 1 
-1 < Φ2 < 1 

The coefficients must fulfil the three requirements 
simultaneously; otherwise, the series will not be 
valid. As stated above, the system thus created is 
made up of 40 rules, each of which is assigned a 
value or relative weight. The last five rules tries to 
combine or identify mixed model when both AR 
and MA models are plausible. 
 
2.3. Using an Evolutionary Algorithm to 
optimize the parameters of the fuzzy system 
  
A genetic algorithm is used to determine the 
weight assigned to each rule. The limits of the 
weights range from 0 to 1. The most complex task 

is the creation of the fitness function, which must 
perform the following tasks: 

1. Using the learning program, evaluate 
various series of known types, obtaining 
one or more results for each. 

2. Calculate the distances of the possible 
models obtained for each series from the 
real model, and store a distance for each 
series.  

3. Sum the distances thus obtained. The 
fitness function seeks to minimise the 
distance. As a maximisation algorithm 
must be applied, the function to be 
maximised is then: 

ε+
=
∑

i
id

F 1  
(2)

where ε is a constant required to avoid an infinite 
result with zero distances, and where di is the 
distance from the model obtained for the series i 
to the real model. The distance used is the 
Euclidean distance, i.e. given two vectors v1=(x, 
y, z) and v2=(a, b, c), the distance between them 
is: 

222 )()()()2,1( czbyaxvvd −+−+−=  (3)

 
We analysed a large quantity of real series used as 
benchmarks in the prediction of time series 
(http://www.secondmoment.org/
time_series.php)  
The results obtained for the simulations, except in 
the case of the mixed series, were highly 
promising, obtaining for AR(p) models 
classification errors of 1.2 % and for MA(q) 
model classification errors of 12.5 % for a total of 
1500 time series. Therefore, this ARMA(p,q) 
structure will be used in conjunction with the 
Neural Network. 
 
3.  Using Simultaneously ARMA and 

Neural Network Models 
 

Most of the time series can be descomposed in a 
linear and nonlinear component in the following 
way: 

t tY L NL= + t  (4)

being Lt  the linear component and NLt denotes 
the nonlinear component. The linear component 
can be captured using the ARMA system 
developed in Section 2. However, the error in the 
forecasting (the residual), should be produced 
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because the nonlinear component can not be 
represented by the ARMA model. Therefore, the 
different between the time series forecasting using 
the ARMA model and the real time series, will be 
the input to the neural network. It is important to 
note, that in order to obtain the linear model, the 
first step is to determine if a natural log 
transformation of the series is necessary. This step 
is accomplished using the likelihood ratio. It is 
necessary to take into account that the likelihood 
is greater for the transformed series than the raw 
series when: 

2

2

1 1log log( ) log( )

1 2log ( ) log( )

i
i i

i i
i i

Y Y
n n

Y Y Y
n n

⎛ ⎞⎛ ⎞⎜ ⎟− >⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎛ ⎞

− +⎜ ⎜ ⎟
⎝ ⎠⎝

∑ ∑

∑ ∑
⎞
⎟
⎠

di

 (5)

If the inequality is fulfilled, it is necessary to take 
the log transform. Therefore, the proposed 
methodology of the hybrid system consists of two 
steps. In the first step, an ARMA model is used to 
analyze the linear component of the time series 
and in the second step a neural network model is 
developed to model the residuals from the ARMA 
model. To design the ANN, a fully connected 
Multilayer Perceptron (MLP) with two hidden 
layers and one output layer has been used. This 
class of network consists of an input layer, a 
number of hidden layers and an output layer. For a 
MLP with one hidden layer, the output of the 
system Nt given selected past observations, Yt-d1, 
Yt-d2,…, Yt-dk, at lags (d1, d2, …,dk), and h neuron 
in the hidden layer is obtained by: 

0 0t h h ih t
h i

Y w w xφ φ −

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑  (6)

Being wih and wh0 the weights for the synapses 
between the inputs and the hidden neurons and 
between the hidden neurons and the output. The 
two functions hφ and 0φ denote the activation 
function, that of course, could be a nonlinear 
mappings from the inputs to hidden nodes and 
from hidden nodes to the output, respectively. The 
logistic function, expressed as: 

1( )
1h xx

e
φ −=

+
 (7)

Is often used in the hidden layer, and the identify 
function for the output layer ( 0φ ).To configure the 
structure of the multilayer perceptron, we need to 
describe the number of hidden layers, the number 
of hidden neurons in each layer, and the types of 

activation functions for each hidden neurons. 
Another important task of ANN modeling of a 
time series is the selection of the number of 
lagged observations, i.e. the dimension of the 
input vector. This is perhaps the most important 
parameter to be estimated in an ANN model 
because it plays a major role in determining the 
(nonlinear) autocorrelation structure of the time 
series. However, there is no theory that can be 
used to guide the selection of the number of input. 
To solve this problem, we have used the input 
proposed for the linear model, in order to identify 
and forecast the residual. 
 
4. Simulation Results 
 
Once the forecasting methodology has been 
established, one can proceed with intensive 
experimental studies. In this section, we provide 
two numerical examples to evaluate the 
advantages and the effectiveness of the proposed 
approach. These include Lorenz attractor, and 
Eriel. 
 
4.1 Lorenz attractor time series 

 
The Lorenz attractor time series was generated by 
solving the Lorenz equations: 
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(8)

where the parameters are set at the standard values 
σ =10, ρ =28 and β =8/3. Solutions to this 
system of three differential equations exhibit the 
sensitive dependence on initial conditions which 
is characteristic of chaotic dynamics. In realistic 
situations, knowledge of the true state of a system 
can be done only in finite precision. In such cases, 
sensitivity to initial conditions rules out long-term 
prediction. On the other hand, short-term 
prediction is possible to the extent that the current 
position can be estimated and that the dynamics 
can be approximated. A long trajectory of the 
Lorenz attractor (1500 points) was generated 
using a differential equation solver (Runge-Kutta 
method) with step size of 0.05 to create a 
univariate time series (x1(t)). The data was split 
into 2 parts: 1127 points were used for training 
and the remaining 361 for assessing the 
generalization capability of the network.       
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Figure 1 shows a characterization of this time 
series (its histogram and its phase diagram). 
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Figure 1  The characterization of the Lorenz time 
series: a) the phase diagram b) histogram  
Figure 2 shows the Lorenz time series forecasting, 
the predicted and desired values, dashed and 
continuous lines, respectively, using only ANN. 
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Figure 2  Lorenz time series (prediction step=1): 
a) result of the original and predicted Lorenz time 
series using only ANN  b) prediction error 
Figure 3 shows the prediction of the Lorenz 
attractor using the proposed methodology. As they 
are practically identical, the difference can only be 
seen on a finer scale (Figure 3.b). The error 
indices, the root mean square error and the 
correlation coefficient, for this simulation were 
0.176 and 0.998 for the model using only ANN 
and 0.0876 and 0.9996 for the proposed 
algorithm. It is important to note that other 
approaches appeared in the bibliography, for 
example T.Iokibe et.al [10] obtain an RMSE of 
0.244, J.S.R.Jang et. al [9] an RMSE of 0.143, 
using fuzzy and neuro-fuzzy systems. ¡Error! No 
se encuentra el origen de la referencia. shows 
the results of correlating one prediction steps 
ahead. Figure 5 and Figure 6 show the results of 
predicting the time series of the Lorenz attractor 
where the prediction steps change (RMSE and 
correlation coefficient). As expected, the greater 
the prediction step, the lower the correlation 
coefficient and greater the RMSE. 
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Figure 3  Lorenz time series (prediction step=1): 
a) result of the original and predicted Lorenz time 
series using proposed methodology (which are 
indistinguishable) b) prediction error 
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Figure 4    Correlation for the Lorenz time series 
using the proposed methodology 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
LORENZ ATTRACTOR

PREDICTION STEP

RM
SE

Training
Test

Figure 5 Result of prediction the Lorenz attractor 
(change of RMSE by prediction step) 
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Figure 6 Result of prediction the Lorenz attractor 
(change of correlation by prediction step) 
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4.2 Monthly Lake Erie Levels 
 

We used a natural phenomenon, the Monthly Lake 
Erie Levels from 1921 to 1970. The first 400 data 
pairs of the series were used as training data, 
while the remaining 200 where used to validate 
the model identified.  
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Figure 7  Eriel time series (prediction step=1): a) 
result of the original and predicted Eriel time 
series using only ANN  b) prediction error 
Figure 7 shows the predicted and desired values 
(dashed and continuous lines, respectively) using 
only ANN and Figure 8 shows the forecasting 
using the hybrid method.  

0 50 100 150 200 250 300 350 400 450
−1

−0.5

0

0.5

1

1.5
DESIRED (SOLID LINE) AND PREDICTED (DASHED LINE). HYBRID SYSTEM

 
Figure 8  Eriel time series (prediction step=1): a) 
result of the original and predicted Eriel time 
series using proposed methodology (which are 
indistinguishable)  
The error indices (RMSE and correlation 
coefficient) for both simulations are respectively 
[0.1045, 0.937] and [0.0820, 0.963].  
 
5. Conclusion 
 
In this paper, a hybrid methodology is proposed 
for time series forecasting that combines linear 
ARMA model and non-linear model such as 
artificial neural network. It is important to note, 
that obtaining the structure of the ARMA model is 
a problem itself, and in order to develop an 
automatic system without the direct intervention 
of a human expert in the Box-Jenkins 
methodology, a fuzzy expert system was design to 
acquire the structure of the ARMA model. The 
justification for automatic ARMA modelling is 
the following: (a) the method for building an 
ARMA model is somewhat complex and requires 
a deep knowledge of the method; (b)  

consequently, building an ARMA model is often a 
difficult task for the user, requiring training in 
statistical analysis, a good knowledge of the field 
of application, and the availability of an easy to 
use but versatile specialized computer program; 
(c) the number of series to be analyzed is often 
large. It is worth mentioning that the automatic 
system presented, using real data set and synthetic 
time series generated by differential equation,  
indicate that the proposed hybrid methodology 
improve the error indexes achieved by either of 
the models used separately 
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