
Extending CAPSL for Logic-Based Ver ifications

LIANG TIAN, REINER DOJEN, TOM COFFEY
Data Communications Security Laboratory

Department of Electronic and Computer Engineering
University of Limerick

IRELAND
 http://www.dcsl.ul.ie

Abstract: - Cryptographic protocols are designed to provide security services, such as key distribution,
authentication and non-repudiation, over insecure networks. The design process of cryptographic protocols is
highly complex. In particular, the translation from the informal protocol description to the formal protocol
specification is an error-prone step, as the exact meaning of the requirements of the security protocol need to be
conveyed. This paper presents a case study on extending the Common Authentication Protocol Specification
Language (CAPSL) to enable it to be used with logic-based formal verification tools for security protocols.

Key-Words: - specification of cryptographic protocols, verification of security protocols, CAPSL

1. Introduction
Cryptographic protocols are designed to

provide security services, such as key distribution,
authentication and non-repudiation, over insecure
networks. The design process of cryptographic
protocols is particularly complex and error-prone
[1]. The surprisingly significant number of
published protocols that have subsequently been
found to contain various flaws, sometimes several
years after the original publication, highlights the
complexity of the design process.

Conventionally, informal techniques have been
used in the design and verification of cryptographic
protocols. However, informal verification alone can
lead to subtle protocol flaws and weaknesses
remaining unidentified. Conversely, formal
verification techniques provide a systematic
approach to discovering protocol flaws and
weaknesses. Common approaches to formal
protocol verification are based on modal logics [1],
[2], [3] or state-machines [4], [5], [6], [7].
Automation of such formal verification techniques
removes many of the potential error sources in
manual verification [8].

Although formal verification has demonstrated
great success in discovering protocol flaws, these
formal techniques are not foolproof. The complex
and difficult translation from the informal protocol
description to the formal protocol specification is
the critical step in order to convey the exact
meaning of security protocol steps [9]. Any
misunderstanding of theses steps will result in a
flawed formal specification, rendering the formal
verification process useless. This is particularly
true of logic-based verifications, as the intended

message meanings must be formally defined, which
requires a thorough understanding of the logic.

CAPSL is a formal language for expressing
authentication and key-exchange protocols. Its
purpose is to express enough of the abstract
features of these protocols to support an analysis
for protocol failures. However, due to its original
design intention for use with state-machine based
verification techniques, CAPSL has difficulty to
model certain logic-specific features.

Automated System

Ver ification Engine

CAPSL Pr otocol
Specif ication

Ver ification
Result

Infor mal Pr otocol
Descr iption

L ogic Specific
Pr otocol

Specif ication

Automated
Ver if ication

L ogic

Fig. 1: Automated Protocol Verification

 This paper presents a case study on extending

CAPSL to enable it to be used in logic-based
formal verification of security protocols. Using

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp234-239)

these extensions, one can use the CAPSL
specification language to model protocols for
verification with the GNY logic. Such a formal
specification can be used as the input to an
automated proving engine [8], [10] as outlined in
Figure 1, where the translation from the CAPSL
protocol specification into the logic-specific
specification is automated.

2. Logic-Based Ver ification
The technique of logic-based formal

verification is accredited largely to Burrows, Abadi
and Needham, developers of the BAN logic [11].
This work initiated intense research in the area of
logic-based formal verification. Several logics,
such as GNY [12], CS [13] and ZV [14] have been
developed on the basis of BAN. These logics can
be used to generate concise proofs and have
identified a number of flaws in protocols
previously considered secure. They incorporate
several improvements over BAN and are applicable
to a wider range of protocols. In general, logic-
based formal verification involves the following
steps [1]:

1. Formalisation of the protocol messages
2. Specification of the initial assumptions
3. Specification of the protocol goals
4. Application of the logical postulates

A successfully verified protocol can be

considered secure within the scope of the logic. On
the other hand, even the results of a failed
verification are helpful, as these may point to
missing assumptions or weaknesses in the protocol.
If a weakness is discovered, the protocol should be
redesigned and re-verified.

However, verification logics have their
limitations, not least of which is the likelihood of
errors in protocol formalisation. Opportunities to
make such mistakes abound as the verification
process is complicated and requires a thorough
understanding of the used logic. During the
verification process the semantics of the protocol
must be interpreted, in order to specify the meaning
that a protocol message is intended to convey. If
the formalised protocol does not properly represent
the original design, then the proof demonstrates
only that the protocol corresponding to this formal
description is secure. However, no claims can be
made on the security of the original design. The use
of a commonly known specification language, like
CAPSL, reduces the risk of errors in the
specification.

3. The CAPSL Specification
Language

CAPSL, acronym for Common Authentication
Protocol Specification Language, is a formal
language for expressing authentication and key-
exchange protocols [15]. Its purpose is to express
enough of the abstract features of these protocols to
support an analysis for protocol failures. The
authors of CAPSL had broadened the applicability
of CAPSL further with the extension to MuCAPSL
[16] for multicast protocols. However, CAPSL has
difficulty to present certain features specific to
logic-based verifications, due to its original design
intention for use with state-space-based verification
techniques. While this case study uses the CAPSL
language, the presented extensions can also be
applied to MuCAPSL.

CAPSL is defined as a high- level language for
applying formal methods to the security analysis of
cryptographic protocols. It intends to permit a
protocol to be specified once in a form that is
usable as an interface to any type of analysis tool or
technique, given appropriate translation software.
CAPSL also clarifies the distinction between short-
term session data and the long-term data associated
with persistent entities. This distinction is achieved
by applying the general type specification
mechanism, together with the novel concepts of
private functions and invertibility axioms. CAPSL
is modular and extensible, and has a number of
syntactic features that are unique to protocol
analysis. CAPSL syntax is motivated both by user
convenience and by the needs of protocol analysis
tools. A CAPSL specification is made up of three
kinds of modules: typespec, protocol, and
environment specifications, usually in that order.
Abstract data type specifications (called typespecs)
introduce new data types and define cryptographic
operators and other functions axiomatically.
Standard typespecs are included automatically and
others may be supplied by the user. A protocol
specification has three principal parts: declarations,
messages and goals. With CAPSL, one can express
protocols in the message-list form. Figure 2
illustrates a sample protocol specification for the
Needham-Schöder Public-Key Protocol.

3.1 Extendibility of CAPSL

One of CAPSL’s advantages over other
specification languages is its extendibility in the
form of abstract data type specifications, called
typespecs. Typespecs are used to declare operations
axiomatically as abstract data types. Specifications

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp234-239)

for the most popular operators, representing the
abstract features of cryptosystems, are included in a
standard ‘prelude’ file of typespecs supplied with
the CAPSL environment.

Type specifications in CAPSL and their use for
introducing new operators and subtypes bring an
expanding class of protocols within reach. Further,
typespecs can be used to introduce new operators
and subtypes as needed when specifying a protocol
for a specific verification tool or technique.

 PROTOCOL NSPK;
 VARIABLES

A,B: PKUser;
Na,Nb: Nonce, CRYPTO;

 ASSUMPTIONS
HOLDS A: B;

 MESSAGES
1. A -> B: {A,Na}pk(B);
2. B -> A: {Na,Nb}pk(A);
3. A -> B: {Nb}pk(B);

 GOALS
SECRET Na
SECRET Nb;
PRECEDES A: B | Na;
PRECEDES B: A | Nb;

 END;
Fig.2: Sample CAPSL Specification

3.2 Problems in Using CAPSL with Logic-
based Formal Ver ification

CAPSL is intended to serve as an interface
supporting a wide range of formal verification
techniques for the analysis of cryptographic
protocols. However, due to its design goal for use
with state-space techniques, it provides little
support for many required operators in logic-based
verifications. Therefore, the original CAPSL
language cannot directly be used to specify security
protocols for logic-based verifications. However,
typespecs can be used to introduce the required
operators for use with different logics. As different
logics use distinct operators, a different set of
typespec extensions must be used for each
individual logic. For example, the concepts of
belief and jurisdiction are central to the GNY logic,
while the CS logic is based on knowledge and
time-indices.

3.3 Using “ Typespecs” to Extend CAPSL

CAPSL’s extendibility is achieved using the
keyword typespec to introduce new data types and
functional operators into CAPSL to meet various
requirements of different verification methods.

The classical use of typespec in CAPSL is to
declare cryptographic operators, hash functions,
and other operations axiomatically as abstract data
types. For example, in the CAPSL prelude file the
basic symmetric-key type was introduced as shown
in Figure 3.

TYPESPEC SKEY;
IMPORTS FIELD;
TYPES Skey;
FUNCTIONS
 sha(Field): Skey;
 mac(Skey,Field): Skey;
END;

Fig.3: CAPSL Symmetric-key Type

The only operators given in this typespec are a

hash function and a keyed hash. The new type
KKEY now can be used to declare a variable or a
subtype in a protocol description.

To utilize CAPSL in logic-based verification of
security protocols, it must be extended for each
individual logic, as many of the corresponding
logic operators are not supported in CAPSL. While
the use of typespec was intended to introduce
operations used for the execution of cryptographic
protocols, such as encryption and decryption, it
also can be used to include verification operators
not provided by the original CAPSL language. For
example, Figure 4 presents a type specification for
the GNY logic in regard to its jurisdiction operator.
By importing this type into a protocol
specification file, the GNY jurisdiction
property can be modelled.

 TYPESPEC JURIS;
 FUNCTIONS
 Jurisdict(Principal,Field):Atom;
 END;

Fig.4: Type for GNY Jurisdiction Operator

4. Case Study: A CAPSL Extension
for the GNY Logic

This section investigates the extension of CAPSL
for the GNY logic. While CAPSL provides a
number of common constructs, which are
applicable to cryptographic protocols, it is not able
to model all of GNY’s operators. The proposed
extensions in this paper allow the use of CAPSL
with GNY-based verifications.

4.1 The GNY Logic
The GNY logic [12] is used to reason about

cryptographic protocols. GNY is a direct successor

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp234-239)

of the BAN logic and is quite powerful in its ability
to uncover even subtle protocol flaws. Discussions
of the virtues and limitations of the logic can be
found in [17] and [18].

In GNY, message extensions are added to the
protocol description during protocol formalisation,
so that principals can communicate their beliefs
and thus reason about each other’s beliefs. The use
of message extensions enables the logic to deal
with different levels of trust between protocol
principals. As such, it is considered an
improvement over BAN, which assumes that all
principals are honest and competent. This
development is noteworthy as many protocol
attacks are performed by dishonest principals. As
an example of a message extension, consider the
following: P→Q:{K,P} Ks- is formally stated as

Q< * { *K,*P} Ks- ~> S |≡ P →←K Q. This means
that principal Q is told a session key, K, and an
identity, P, encrypted under the private key of
principal S. Each component is marked with a not-
originated-here asterisk. Also, Q is told that S
believes K is a suitable shared secret for P and Q.

The postulates of the GNY logic are used to
deduce whether the protocol goals can be derived
from the initial assumptions and protocol steps. If
such a derivation exists, the protocol is successfully
verified.

4.2 Extending CAPSL for GNY

The following concepts of the GNY logic need
to be modelled by CAPSL:
• Convey: When a principal conveys some

formula X, X can be the message itself or
something computable from such a message. i.e.
a formula can be conveyed implicitly. This
operator is not directly supported in CAPSL.

• Posession: This indicates what a principal
possesses, or is capable of possessing. At any
particular stage of a protocol run, this includes all
the formulae that a principal has been told, all the
formulae it started the session with, as well as all
the ones it has generated during the course of the
run. Also, the principal possesses or is capable of
possessing everything that is computable from
the formulae that it already possesses. Available
through CAPSL HOLDS operator.

• Freshness: When a formula is declared as fresh,
it implies that this formula has not been used for
the same purpose at any time before the current
run of the protocol e.g. a pseudo-random number
generator can produce formulae that a principal
can safely believe to be fresh. CAPSL only

supports freshness of variables, but not of
messages/statements.

• Recognisable: This implies that a principal
would recognise a formula if the principal has
certain expectations about the contents of the
formula. The principal may recognise its own
identifier e.g. its own identifier, a particular
structure e.g. the format of a timestamp, or a
particular form of redundancy. This operator is
not directly supported in CAPSL.

• Belief: The reasoning system uses rules about
how belief is propagated to establish new beliefs.
Belief is considered useful in evaluating trust that
may be placed in a security protocol or another
principal. If a principal P believes X, then the
principal P acts as if X is true. Available through
CAPSL BELIEVES operator.

• Secrecy: A secrecy assertion implies that the
value of a variable generated by its nominal
originator cannot be obtained by an intruder
(unless, that is, that the intruder is playing the
role of a legitimate). Available through CAPSL
SECRET operator.

• Jur isdiction: The notion of jurisdiction also
represents trust. Saying that a principal has
jurisdiction over some piece of data implies that
the principal is an authority on this data and
should be trusted on this matter. This operator is
not directly supported in CAPSL.

• Message Extension: Protocol specifications
often include verbal descriptions to the effect that
a principal should only proceed if certain
conditions hold or only if the principal holds
certain beliefs. This can be regarded as a
precondition. In GNY, if a statement C is the
precondition for a formula being conveyed, C is
called a message extension

Figure 5 details the proposed “Typespec”

extensions to the CAPSL language for GNY
specifications.

The CAPSL specification detailed in Figure 6
models the Needham-Schröder Symmetric Key
protocol using the extensions outlined above.

5. Conclusions
This paper reviewed the CAPSL specification

languages and its usage with logic-based formal
verification of cryptographic protocols. The
existing problems when using CAPSL as a
specification language for verifications with formal
logics are detailed. As a case study, the GNY logic
was selected to investigate the extendibility of
CAPSL for use with logic-based verifications.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp234-239)

// Message Extension
TYPESPEC STATEMENT;
TYPES
 Operator : Atom;
 Stmt: Atom;
FUNCTIONS
st(Principal,Operator,Field):Stmt;
END;

TYPESPEC MSGEXT;
IMPORT STATEMENT;
TYPES
 Msg : Field;
FUNCTIONS
 ext(Msg,Stmt):Atom;
END;

// Convey Operator
TYPESPEC CONVEY;
FUNCTIONS
 convey(Principal, Field):Atom;
END;

// Freshnes Operator
TYPESPEC FRESHNESS;
FUNCTIONS
 fresh(Field):Atom;
END;

// Not Originated Here Formulae
TYPESPEC NOTHERE;
FUNCTIONS
 nothere(Field):Atom;
END;

// Recognizable Operator
TYPESPEC RECON;
FUNCTIONS
 reconised(Field):Atom;
END;

// Jurisdiction Operator
TYPESPEC JURIS;
FUNCTIONS
 jurisdiction(Principal,
 Field):Atom;
END;

Fig. 5: Proposed GNY extensions for CAPSL

PROTOCOL NeedhamSchroederSymmetric;
IMPORTS MSGEXT;
IMPORTS JURIS;
IMPORTS FRESHNESS;
IMPORTS RECON;
IMPORTS NOTHERE;
VARIABLES
 A,B: Client;
 S: Server;

 Na,Nb: Nonce, FRESH, CRYPTO;
 Ka,Kb: Skey;
 allStatement: Atom;
 Kas: Skey, FRESH, CRYPTO;
 Believe: Operator;
 Stmt1,Stmt2,Stmt3: Stmt;
DENOTES
 Stmt1= st(S, Believe,
 shareKey(A,Kab, B));
 Stmt2= st (S, Believe,
 shareKey(B,Kab,A));
ASSUMPTIONS
HOLDS A:Kas;
BELIEVES A: SECRET Kas:A,S;
HOLDS A: Na;
BELIEVES A: fresh(Na);
BELIEVES A: jurisdiction(A,
 st(A,Believe,allStatement));
BELIEVES A: jurisdiction(A,
 shareKey(A,Kab,B));
HOLDS B: Kbs;
BELIEVES B: shareKey(B,Kbs,S);
HOLDS B :Nb;
BELIEVES B: fresh(Nb);
BELIEVES B: jurisdiction(S,
 st(A,Believe,allStatement));
BELIEVES B: jurisdiction(S,
 shareKey(A,Kab,B));
BELIEVES A: recognised(B);
BELIEVES B: recognised(A);

MESSAGES
 A->S: A,B,Na;
 S->A: notHere({ext(Na,B,Kab,{ext
 (Kab,A,Stmt2)}Kbs,Stmt1)}Kas);
 A->B: notHere({ext(Kab,A,
 Stmt2)}Kbs);
 B->A: notHere({Nb}Kab);
 A->B:notHere({decrement(Nb)}Kab);

GOALS
 HOLDS A: Kab;
 BELIEVES A: shareKey(A,Kab,B);
 BELIEVES A: convey(B, {Nb}Kab);
 BELIEVES A: fresh(B, {Nb}Kab);
 HOLDS B: Kab;
 BELIEVES B: shareKey(B,Kab,A);
 BELIEVES B:convey(A,{
 decrement(Nb)}Kab);
END;

Fig. 6: Sample Extended CAPSL Specification

 This paper proposed extensions to the CAPSL
specification language in the form of typespecs.
These extensions allow the use of CAPSL as a
specification language for GNY-based
verifications. Such a formal specification can be
used as the input to an automated proving engine,
where the translation from the CAPSL protocol
specification into the logic-specific specification is

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp234-239)

automated. Similar extensions of CAPSL can be
developed for other verification logics, to allow the
use of CAPSL as a specification language for these
logics.

6. Acknowledgements
 The authors gratefully acknowledge the support
of the Irish Research Council for Science,
Engineering and Technology who funded this work
under the IRCSET Basic Research Award Scheme
(grant SC02/237).

References:
[1] Coffey, T., Dojen, R. and Flanagan, T.,

“Formal Verification: An Imperative Step in
the Design of Security Protocols” , Computer
Networks Journal, Elsevier Science, Vol. 43,
No.5, December 2003, pp.601-618.

[2] Kessler, V. and Wendel, G., “AUTLOG – An
advanced logic of authentication” , Proceedings
of 7th IEEE Computer Security Foundations,
Menlo Park, California, USA, August 1994,
pp.90-99.

[3] Brackin, S., “Automatically detecting most
vulnerabilities in Cryptographic protocols” ,
DARPA Information Survivability Conference
and Exposition Vol.1, Hilton Head, South
Carolina, USA, January 2000, pp.222-236.

[4] Sverson P. and Meadows C., “Formal
requirements for Key distribution protocols” ,
Proceedings of Advances in Cryptology -
EUROCRYPT'94, Perugia, Italy, May 1995,
pp.320-331.

[5] Huima, A. “Efficient infinite-state analysis of
security protocols” , Proceedings of FLOC'99
Workshop on Formal Methods and Security
Protocols, July 1999

[6] Gürgens, S. and Rudolph, C., “Security
Analysis of (Un-)Fair Non-repudiation
Protocols” , Formal Aspects of Security, LNCS
2629, 2002, pp.97-114.

[7] Healy, K., Coffey, T. and Dojen, R., “A
Comparative Analysis of State-Space Tools for
Security Protocol Verification” , WSEAS
Transactions on Information Science and
Applications, Volume 1, Issue 5, November
2004, pp.1256-1261.

 [8] Dojen, R. and Coffey, T., “Layered Proving
Trees: A Novel Approach to the Automation of
Logic-Based Security Protocol Verification”,
ACM Transactions on Information and System
Security (TISSEC), Volume 8, Issue 3, August
2005, pp.287-311.

[9] Meadows, C., “What Makes a Cryptographic
Protocol Secure? The Evolution of
Requirements Specification in Formal
Cryptographic Protocol Analysis” , Proceedings
of ESOP 03, Springer-Verlag, April 2003.

[10] Dojen, R. and Coffey, T., “A Novel Approach
to the Automation of Logic-Based Security
Protocol Verification” , WSEAS Transactions
on Information Science and Applications, Vol.
1, No. 5, November 2004, pp.1243-1247.

[11] Burrows, M. Abadi, M, and Needham, R., “A
logic of authentication” , ACM Operating
System Review Vol. 23, No.5, 1989, pp.1–13.

[12] Gong, L., Needham, R. and Yahalom, R.,
“Reasoning about belief in cryptographic
protocols” , Proceedings of IEEE Computer
Society Synopsis on Research in Security and
Privacy, 1990, pp.234–248.

[13] Coffey, T. and Saidha, P., “A logic for
verifying public key cryptographic protocols” ,
IEE Journal of Proceedings––Computers and
Digital Techniques Vol. 144, No.1, 1997,
pp.28–32.

[14] Zhang, Y. and Varadharajan, V., “A logic for
modeling the dynamics of beliefs in crypto-
graphic protocols” , Australasian Computer
Science Conference, 2001.

[15] Millen J., “CAPSL: Common Authentication
Protocol Specification Language” , Technical
Report MP 97B48, The MITRE Corporation,
1997.

[16] Millen, J. and Denker, G., “MuCAPSL” ,
DISCEX III, DARPA Information
Survivability Conference and Exposition. IEEE
Computer Society, 2003, pp.238–249.

[17] Gong, L. “Handling infeasible specifications
of cryptographic protocols” , 4th Computer
Security Foundation Workshop, 1991, pp.99-
102.

[18] Mathuria, A., Safavi-Naini, R. and Nickolas,
P., “Some remarks on the logic of Gong,
Needham and Yahalom”, International
Computer Symposium, Hsinchu, Taiwan,
R.O.C, Vol. 1, 1994, pp.303-308.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp234-239)

