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Abstract: In this paper we study an evolution problem which describes the dynamic bilateral
contact of viscoelastic body and foundation. The contact is modeled by a friction multivalued
subdi�erential boundary condition which involves the Coulomb law of �ction. We prove the
existence and uniqueness of weak solutions to the hyperbolic variatioal inequality by using a
surjectivity result for pseudomonotone operators and a �xed point argument.
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1 Introduction
Mathematical theory of contact mechanics is a
growing �eld in engineering and scienti�c com-
puting. We deal with a model for a mechanical
problem describing bilateral frictional contact
between a viscoelastic body and a rigid founda-
tion. The model consists of a hyperbolic system
of equations of motion, representing momentum
conservation, considered in a bounded domain
subjected to mixed boundary conditions. Our
main interest lies in the boundary conditions
on the contact surface. The bilateral contact
condition describes the situation when contact
between the body and the foundation is main-
tained at all times. This is the case in many
machines and in moving parts and components
of mechanical equipment such as the contact be-
tween the piston rings and the engine block in a
car and the frictional contact of the wheels with
the rail when a train is braking. Mathematically
there is no separation (no gap) between the body
and the foundation, and the normal component
of the displacement on the contact surface van-
ishes. We model the friction with a multivalued
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subdi�erential boundary condition which incor-
porates the Coulomb law of friction.

The aim of the paper is proving the exis-
tence and uniqueness of a solution under the
hypothesis that the friction coe�cient is su�-
ciently small. It is solved by exploiting the sur-
jectivity result for multivalued pseudomonotone
operators and a �xed point argument.

The paper is organized as follows. In Sec-
tion 2 we recall some notation and present some
auxiliary material. In Section 3 we state the
mechanical problem and describe the classical
model for the process. We also derive the varia-
tional inequality formulation of the model and
state the hypotheses. The statement of the main
existence and uniqueness result is given in Sec-
tion 4.

2 Preliminaries and notation
We denote by Sd the linear space of second order
symmetric tensors on IRd (d = 2, 3), or equiva-
lently, the space IR d×d

s of symmetric matrices of
order d. We de�ne the inner products and the
corresponding norms on IRd and Sd by

u · v = uivi, ‖v‖ = (v · v)1/2, u, v ∈ IRd,

σ : τ = σijτij , ‖τ‖Sd
= (τ : τ)1/2, σ, τ ∈ Sd.
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The summation convention over repeated indices
is used.

Let Ω ⊂ IRd be a bounded domain with a Lip-
schitz boundary Γ and let n denote the outward
unit normal vector to Γ. The assumption that Γ
is Lipschitz ensures that n is de�ned a.e. on Γ.
We use the following spaces

H = L2(Ω; IR d), H = L2(Ω;Sd),

H1 = {u ∈ H : ε(u) ∈ H} = H1(Ω; IR d),

H1 = {τ ∈ H : div τ ∈ H} ,

where ε : H1(Ω; IR d) → L2(Ω;Sd) and
div : H1 → L2(Ω; IR d) denote the deforma-
tion and the divergence operators, respectively,
given by

εij(u) =
1
2
(ui,j + uj,i), div σ = {σij,j}

and the index following a comma indicates a par-
tial derivative. The spaces H, H, H1 and H1 are
Hilbert spaces equipped with the inner products

〈u, v〉H =
∫

Ω
u · v dx, 〈σ, τ〉H =

∫

Ω
σ : τ dx,

〈u, v〉H1 = 〈u, v〉H + 〈ε(u), ε(v)〉H,

〈σ, τ〉H1 = 〈σ, τ〉H + 〈div σ,div τ〉H .

The associated norms in H, H, H1 and H1 are
denoted by | · |, ‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 , respec-
tively.

For every v ∈ H1 we denote by v its trace γv
on Γ, where γ : H1(Ω; IR d) → H1/2(Γ; IR d) ⊂
L2(Γ; IR d) is the trace map. Given v ∈
H1/2(Γ; IR d) we denote by vN and vT the usual
normal and the tangential components of v on
the boundary Γ vN = v · n, vT = v − vNn.
Similarily, for a regular (say C1) tensor �eld
σ : Ω → Sd, we de�ne its normal and tangen-
tial components by σN = (σn) · n, σT =
σn− σNn.

The following surjectivity result (see [2]) for
L-pseudomonotone operators will be used in our
existence theorem.

Proposition 1 If Y is a re�exive, strictly con-
vex Banach space, L : D(L) ⊂ Y → Y ∗ is a
linear densely de�ned maximal monotone oper-
ator and T : Y → 2Y ∗ \ {∅} is bounded coercive
and pseudomonotone with respect to D(L), then
L + T is surjective.

3 Problem formulation
In this section we describe the classical model
and then we give its variational formulation.

We consider a deformable viscoelastic body
which occupies the reference con�guration Ω ⊂
IR d, d = 2, 3. We suppose that Ω is a bounded
domain with Lipschitz boundary Γ and Γ is di-
vided into three mutually disjoint measurable
parts ΓD, ΓN and ΓC such that meas(ΓD) > 0.
The body is held �xed on ΓD, so the displace-
ment �eld vanishes there and we use the homoge-
neous Dirichlet condition on ΓD. Volume forces
of density f1 act in Ω and the surface tractions of
density f2 are applied on ΓN so we use the Neu-
mann condition on ΓN . The body may come
in contact with a foundation over the potential
contact surface ΓC .

We denote by u(x, t) = {ui(x, t)} the dis-
placement vector for (x, t) ∈ Q = Ω × (0, T )
with 0 < T < +∞, by σ = {σij} the stress ten-
sor and by ε(u) = {εij(u)} the linearized (small)
strain tensor. We suppose the Kelvin-Voigt vis-
coelastic constitutive relation

σ(u, u′) = C(ε(u′)) + G(ε(u)),

where C and G are given nonlinear and linear
constitutive functions, respectively. We remark
that in linear viscoelasticity the above law takes
of the form

σij = cijklεkl(u′) + gijklεkl(u),

where C = {cijkl} and G = {gijkl} are the vis-
cosity and elasticity tensors, respectively.

The classical model for dynamic bilateral con-
tact with friction is as follows: (P) �nd a dis-
placement u : Q → IR d and a stress �eld σ : Q →
Sd such that




u′′ − div σ(u, u′) = f1 in Q
σ(u, u′) = C(ε(u′)) + G(ε(u)) in Q
u = 0 on ΓD × (0, T )
σn = f2 on ΓN × (0, T )
uN = 0, on ΓC × (0, T )
−σT ∈ µ p(|RσN |)∂‖u′T ‖IRd on ΓC × (0, T )
u(0) = u0, u′(0) = u1 in Ω.

Here, for the sake of simplicity, the material den-
sity is assumed constant and set equal to one.
We set the problem (P) in a variational form.
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To this end we introduce the closed subspace of
H1 de�ned by

V = {v ∈ H1 : v = 0 on ΓD, vN = 0 on ΓC} .

This is a Hilbert space with the inner product
and the corresponding norm given by

(u, v)V = (ε(u), ε(v))H, ‖v‖ = ‖ε(v)‖H, u, v ∈ V.

From the Korn inequality ‖v‖H1 ≤ c‖ε(v)‖H for
v ∈ V with c > 0, it follows that ‖ · ‖H1 and
‖ · ‖ are the equivalent norms on V . Identifying
H with its dual, we obtain an evolution triple
of spaces V ⊂ H ⊂ V ∗ (cf. e.g. [10]) with
dense, continuous and compact embeddings. We
denote by 〈·, ·〉 the duality of V and its dual V ∗,
by ‖ · ‖V ∗ the norm in V ∗. We have 〈u, v〉 =
〈u, v〉H for all u ∈ H and v ∈ V .

In what follows we need the spaces V =
L2(0, T ; V ), Ĥ = L2(0, T ; H) and W = {w ∈
V : w′ ∈ V∗}, where the time derivative in-
volved in the de�nition of W is understood in
the sense of vector valued distributions. En-
dowed with the norm ‖v‖W = ‖v‖V + ‖v′‖V∗ ,
the space W becomes a separable re�exive Ba-
nach space. We also have W ⊂ V ⊂ Ĥ ⊂ V∗.
The duality for the pair (V,V∗) is denoted by
〈〈z, w〉〉V∗×V =

∫ T
0 〈z(s), w(s)〉 ds for z ∈ V∗,

w ∈ V. It is well known (cf. [10]) that the
embeddingsW ⊂ C(0, T ; H) and {w ∈ V : w′ ∈
W} ⊂ C(0, T ; V ) are continuous.

We suppose that the coe�cient of friction µ,
the force and traction densities f1, f2, the initial
displacement and velocity u0 and u1 and the reg-
ularization operator R satisfy the following con-
ditions, respectively.

H(µ) : µ ∈ L∞(ΓC × (0, T )), µ ≥ 0 a.e. (x, t);

H0 : u0 ∈ V , u1 ∈ H, f1 ∈ L2(0, T ; H), f2 ∈
L2(0, T ; L2(ΓN ; IR d));

H(R) : R ∈ L(H−1/2(Γ);L2(Γ)).

The assumptions on the friction function p (cf.
(8.5.8) in [7]) and the contact (superpotential)
function j are as follows.

H(p) : p : ΓC × IR → IR+ satis�es
(1) p(·, r) is measurable on ΓC for all r ∈ IR;

(2) |p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2| for all r1,
r2 ∈ IR, a.e. x ∈ ΓC with Lp > 0;

(3) p(·, 0) ∈ L2(ΓC).

The viscosity and elasticity operators satisfy the
following conditions.

H(C) : C : Q× Sd → Sd satis�es the properties
(1) C(·, ·, ε) is measurable on Q for all ε ∈ Sd;
(2) C(·, ·, 0) ∈ L2(Q,Sd);
(3) ‖C(x, t, ε1)− C(x, t, ε2)‖Sd

≤ LC‖ε1 − ε2‖Sd

for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q with
LC > 0;

(4) (C(x, t, ε1) − C(x, t, ε2)) : (ε1 − ε2) ≥ 0 for
all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q;

(5) C(x, t, ε) : ε ≥ α‖ε‖2
Sd
− α1(x, t)‖ε‖Sd

for
all ε ∈ Sd, a.e. (x, t) ∈ Q with α > 0,
α1 ∈ L2(Q), α1 ≥ 0.

Remark 2 If the conditions H(C)(2) and (3)
hold, then ‖C(x, t, ε)‖Sd

≤ LC‖ε‖Sd
+ b(x, t) for

all ε ∈ Sd, a.e. (x, t) ∈ Q, where b(x, t) =
‖C(x, t, 0)‖Sd

, b ∈ L2(Q), b ≥ 0.

In Section 4, in the second part of the proof
of Theorem 5 we need the following hypothesis:

H(C)1 : C : Q × Sd → Sd satis�es H(C)(1),
(2), (3) and the strong monotonicity condition
(C(x, t, ε1)−C(x, t, ε2)) : (ε1−ε2) ≥ m‖ε1−ε2‖2

Sd

for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q with m > 0;
It easy to see that if the operator C satis�es

H(C)1, then it satis�es H(C).
H(G) : G : Ω×Sd → Sd is of the form G(x, ε) =
E(x)ε (the Hooke law) with a symmetric and
nonnegative elasticity tensor E, i.e. E = {Gijkl},
i, j, k, l = 1, . . . , d with Gijkl ∈ L∞(Ω), Gijkl =
Gjikl = Glkij and Gijkl(x)χijχkl ≥ 0 for all sym-
metric tensors χ = {χij} and for a.e. x ∈ Ω.

Next, for f1 and f2 satisfying the regularity
in H0, we de�ne f ∈ V∗ by

〈f(t), v〉 = (f1(t), v)H + (f2(t), v)L2(ΓN ;IR d).

Example 3 Since the subdi�erential of ‖ · ‖IRd

is the unit vector in the direction of ξ when ξ 6= 0
and it is the unit ball B1 = {ξ ∈ IR d : ‖ξ‖IR d ≤
1}, that is, ∂(‖ξ‖IRd) equals ξ/‖ξ‖ if ξ 6= 0
and equals B1 if ξ = 0, we easily observe that
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‖∂(‖ξ‖IRd)‖IRd ≤ 1 for all ξ ∈ IRd. Then the
contact boundary condition

−σT (x, t) ∈ µ(x, t)p(x, |RσN (x, t)|) ∂ ‖u′T (x, t)‖IR d

(1)
on ΓC × (0, T ) is equivalent to

‖σT ‖ ≤ µp(|RσN |) with
‖σT ‖ < µp(|RσN |) ⇒ u′T = 0,
‖σT ‖ = µp(|RσN |) ⇒ ∃λ ≥ 0 :

σT = −λu′T on ΓC × (0, T ).

(2)

In the case when p is a known function which is
independent of |RσN |, i.e. p(x, r) = h(x) with
h ∈ L∞(ΓC), h ≥ 0, p satis�es H(p) and the
conditions (2) become the Tresca friction law (cf.
Section 2.6 of [7] for a detailed discussion). If
p(x, r) = |r|, then H(p) holds and (2) reduces to
the usual regularized Coulomb friction boundary
condition

‖σT ‖ ≤ µ|RσN | with
‖σT ‖ < µ|RσN | ⇒ u′T = 0,
‖σT ‖ = µ|RσN | ⇒ ∃λ ≥ 0 :

σT = −λu′T on ΓC × (0, T ),

which was extensively used in the literature (cf.
e.g. [3, 7, 1, 6]). If p(x, r) = |r|(1 − δ|r|)+
with (·)+ = max{·, 0}, where δ is a small positive
coe�cient related to the wear and hardness of the
surface, then H(p)1 holds and we obtain a mo-
di�cation to the Coulomb law of friction. Such
a modi�cation, called the SJK model, consists of
the factor (1−δ| · |)+ and was derived in [9] from
the thermodynamical considerations. It leads to
the condition

‖σT ‖ ≤ µ|RσN |(1− δ|RσN |)+ with
‖σT ‖ < µ|RσN |(1− δ|RσN |)+ ⇒ u′T = 0,
‖σT ‖ = µ|RσN |(1− δ|RσN |)+ ⇒ ∃λ ≥ 0 :

σT = −λu′T on ΓC × (0, T ).

For the discussion of the SJK generalization of
the Coulomb law, we refer to [9,6,7,8].

In order to obtain the variational formula-
tion of the problem (P), we use the dynamic
equations of motion in (P), multiply them by
v − u′(t) with v ∈ V , apply the Green for-
mula (assuming the regularity of the functions
involved) and take into account the boundary

conditions on Γ. Introducing the contact func-
tional J : (0, T )×H× V → IR given by

J(t, g, z) =
∫

ΓC

µ(x, t)p(x, |RσN (x)|)‖zT ‖IRd dΓ,

(3)
we obtain the following variational formulation
of (P ): �nd a displacement �eld u : (0, T ) → V
such that




〈u′′(t), v − u′(t)〉+
+(σ(t), ε(v)− ε(u′(t)))H+
+J(t, σ(t), v)− J(t, σ(t), u′(t)) ≥
≥ 〈f(t), v − u′(t)〉 for v ∈ V, a.e. t

σ(t) = C(ε(u′(t))) + G(ε(u(t))) a.e. t
u(0) = u0, u′(0) = u1.

(4)

4 Main result
The goal of this section is to state the main exis-
tence and uniqueness result for the variational
inequality (4). We also provide the properties of
the data involved in this problem.

De�nition 4 A function u ∈ V is said to be
weak solution of the problem (P ) if and only if
u′ ∈ W and (4) holds.

Theorem 5 If the hypotheses H(µ), (H ′
0),

H(R), H(p), H(G), H(C)1 hold, then there is the
unique weak solution to the problem (P ). More-
over, the stress �eld satis�es σ ∈ L2(0, T ;H) and
div σ ∈ V∗.

The proof of this theorem will be carried
out in two main steps. In the �rst step we
study the problem (4) when the stress �eld σ
on the contact boundary ΓC is supposed to be
known. The existence and uniqueness of solu-
tions to this auxiliary problem is obtained by
employing the surjectivity result for multival-
ued L-pseudomonotone operators (cf. Proposi-
tion 1). In the second step of the proof we use
the Banach �xed point theorem and obtain ex-
istence and uniqueness result for (4).

In the �rst step of the proof of Theorem 5,
for every �xed g ∈ L2(0, T ;H), we consider the
following problem: (Pg) �nd u ∈ V with u′ ∈ W
such that



〈u′′(t), v − u′(t)〉+ (σ(t), ε(v)− ε(u′(t)))H+
+J(t, g(t), v)− J(t, g(t), u′(t)) ≥
≥ 〈f(t), v − u′(t)〉 for v ∈ V a.e. t
σ(t) = C(ε(u′(t))) + G(ε(u(t))) a.e. t
u(0) = u0, u′(0) = u1.
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Since in this problem, the stress on the contact
boundary is known, by inserting σ(t) into the
inequality, we have

〈u′′(t) + A(t, u′(t)) + Bu(t)− f(t), v − u′(t)〉+
+J(t, g(t), v)− J(t, g(t), u′(t)) ≥ 0

for all v ∈ V and a.e. t ∈ (0, T ), where the
operators A : (0, T ) × V → V ∗ and B : V → V ∗

are de�ned by

〈A(t, u), v〉 = (C(x, t, ε(u)), ε(v))H , (5)

〈Bu, v〉 = (G(x, ε(u)), ε(v))H (6)
for u, v ∈ V and t ∈ (0, T ). Hence, by the
de�nition of the subdi�erential, we obtain the
following equivalent form of the problem (Pg):
�nd u ∈ V with u′ ∈ W such that

(Ig)





f(t) ∈ u′′(t) + A(t, u′(t)) + Bu(t)+
+∂J(t, g(t), u′(t)) a.e. t ∈ (0, T )
u(0) = u0, u′(0) = u1.

Here the symbol ∂J denotes the subdi�erential
of J with respect to the third variable.

Thus, in order to establish the existence and
uniqueness to (Pg), it is enough to study (Ig).

4.1 Auxiliary results
We establish the properties of the operators A
and B de�ned by (5) and (6), respectively, and
the contact functional given by (3).

Lemma 6 Under the hypothesis H(C), the ope-
rator A given by (5) satis�es
H(A) : A : (0, T )× V → V ∗ is such that
(1) A(·, v) is measurable on (0, T ) for all v ∈ V ;
(2) A(·, 0) ∈ V∗;
(3) ‖A(t, u1) − A(t, u2)‖V ∗ ≤ LC‖u1 − u2‖ for

all u1, u2 ∈ V , a.e. t ∈ (0, T ) with LC > 0;
(4) A(t, ·) is monotone;
(5) 〈A(t, v), v〉 ≥ α||v||2 − a(t)‖v‖ for v ∈ V

a.e. t, where α > 0, a ≥ 0, a ∈ L2(0, T ).
Under the hypothesis H(C)1, the operator A sa-
tis�es
H(A)1 : A : (0, T ) × V → V ∗ satis�es
H(A)(1), (2), (3) and the strong monotonic-
ity condition 〈A(t, u1) − A(t, u2), u1 − u2〉 ≥
m‖u1 − u2‖2 for all u1, u2 ∈ V , a.e. t with
m > 0.

Lemma 7 Under the assumption H(G), the o-
perator B : V → V ∗ de�ned by (6) satis�es
H(B) : B : V → V ∗ is a bounded, linear,
monotone and symmetric operator, (i.e. B ∈
L(V, V ∗), 〈Bv, v〉 ≥ 0 for all v ∈ V , 〈Bv, w〉 =
〈Bw, v〉 for all v, w ∈ V ).

We also remark that if H0 is satis�ed, then
(H ′

0) holds, where
(H ′

0) : f ∈ V∗, u0 ∈ V , u1 ∈ H.

Lemma 8 Assume that H(µ) and H(p) hold,
then the functional J de�ned by (3) satis�es

H(J) : J : (0, T )×H× V → IR is such that
(1) J(·, g, z) is measurable on (0, T ) for all g ∈

H, z ∈ V ;
(2) J(t, g, ·) is well de�ned and convex for t ∈

(0, T ), g ∈ H;
(3) ‖∂J(t, g, z)‖Z∗ ≤ c‖µ‖ for (t, g, z) ∈

(0, T ) × H × V , where c =
2‖γ̄‖ ‖pg‖L2(ΓC), pg(x) = p(x, |RgN (x)|),
‖γ̄‖ = ‖γ̄‖L(Z,L2(Γ;IRd)) and ‖µ‖ =
‖µ‖L∞(ΓC×(0,T )).

For proofs of these lemmata see [4].

In order to establish the existence and unique-
ness of solution to the evolution inclusion (Ig) we
begin the study of (Ig) with the a priori estimate
for the solutions.

Lemma 9 Let g ∈ L2(0, T ;H) be �xed, H(A),
H(B), (H ′

0) hold and let u be a solution to (Ig).
If H(J) holds or H(J)1 is satis�ed with ‖µ‖ suf-
�ciently small, then

‖u‖C(0,T ;V ) + ‖u′‖W ≤
≤ C (1 + ‖u0‖+ |u1|+ ‖f‖V∗) (7)

with a positive constant C.

Theorem 10 Let g ∈ L2(0, T ;H) and assume
the hypotheses H(A), H(B) and (H ′

0). If H(J)
holds, then the problem (Ig) has the unique solu-
tion.

The main idea of the proof is based on [5], in par-
ticilar on the surjectivity result for multivalued
pseudomonotone operators.
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The goal of this part of section is to apply the
Banach �xed point theorem to the problem (Ig)
and deduce the existence and uniqueness of so-
lutions to (4). The main additional hypothesis
of this section is the strong monotonicity of the
operator A(t, ·).

From the �rst part of the proof, we know
that under the hypotheses of Theorem 10, for
every g ∈ L2(0, T ;H), there exists the unique
u = ug solution to (Ig) such that ug ∈ V and
u′g ∈ W. Equivalently, we have that for every
g ∈ L2(0, T ;H), there is the unique solution ug

of the problem (Pg) with the above mentioned
regularity. We take σg(t) = Cε(u′g(t))+Gε(ug(t))
for a.e t ∈ (0, T ) and consider the operator
Λ: L2(0, T ;H) → L2(0, T ;H) de�ned by

Λg = σg for g ∈ L2(0, T ;H).

We have the following

Theorem 11 Under the hypotheses H(µ),
(H0), H(R), H(p), H(G), H(C)1, if
‖µ‖L∞(ΓC×(0,T )) is su�ciently small, then
the operator Λ has a unique �xed point
g∗ ∈ L2(0, T ;H).

Proof of Theorem 5. From the de�nition of
the operator Λ and Theorem 11, if ‖µ‖ is suf-
�ciently small, we deduce that the solution ug∗

of the problem (Pg∗) is a solution of the varia-
tional inequality (4). The uniqueness of the so-
lution to (4) is a consequence of the uniqueness
of the solution of (Pg∗) and the uniqueness of
the �xed point of Λ. Moreover, we have follow-
ing regularity of the solution and the correspon-
ding stress tensor u ∈ W 1(0, T ;V ) ∩ C(0, T ; V ),
u′ ∈ C(0, T ;H), u′′ ∈ L2(0, T ; V ∗) and σ ∈
L2(0, T ;H) with div σ ∈ L2(0, T ; V ∗). ¤

5 Conclusions
In the recent years a considerable progress has
been achieved in the modeling and analysis of
mechanical processes involved in contact be-
tween deformable bodies. The �rst attempts to
deal with the dynamic contact problem with fric-
tion was carried out by G. Duvaut and J.-L. Li-
ons in 1972.
The present paper presents a new technics of the
proof and can be extended to more general case.

It is possible to consider the contact boundary
condition with a locally Lipschitz superpotential
j instead of ‖u′T ‖IRd .
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