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Abstract: A two-step spline wavelet approach to circuit simulation in the digital signal processing perspective is
proposed in this paper. First a fast recursive B-spline filtering approach to solving ordinary differential equations
is introduced, then the fast wavelet decomposition and reconstruction algorithms are applied using multiresolution
analysis. This work also exploits the relationship between digital signal processing theory and the numerical
methods for circuit simulation.
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1 Introduction

Recently the application of wavelet theory to circuit
simulation has received considerable interests [10, 11,
3, 4], partly due to the fact that it is a promising ap-
proach to deal with the difficulties encountered by
the conventional circuit simulation methods, such as
nonuniform error distribution and singularities which
often develop in high speed circuit.

The wavelet collocation method proposed in [10]
was the first wavelet approach to circuit simulation,
and the basic idea is that the solutions of ordinary
differential equations (ODEs) which describe VLSI
systems are decomposed into wavelet representations,
then the wavelet coefficients are obtained by a fast col-
location method. It was shown that the wavelet collo-
cation method was very effective to handle the uni-
form error distribution problem and provided a mech-
anism to capture the signal singularities arising in high
speed circuits. In [11] the wavelet collocation method
was further generalized into nonlinear circuit simula-
tion, and later, the work in [3, 4] successfully applied
this method to the behavioral modelling for analog
system-level simulation to address the issue of error
distribution control.

However, wavelet collocation method is a theo-
retically complex method and it is still very difficult
for the engineering society to grasp the whole idea
and apply to their own applications. Additionally its
connection to the signal processing area where the
whole wavelet theory originates and continually en-
joys a huge success is not clear. In this paper, we try
to exploit the possible applications of digital signal
processing theory to the numerical methods for circuit
simulation, and we will focus on the spline wavelet

functions [1, 10].
Spline functions are used extensively in interpo-

lation problems, and the traditional method to find
the spline coefficients is by solving linear equations.
Unser and his colleagues [8, 9] were among the first
to recognize the connection between spline interpola-
tion and digital filtering, and developed a fast filter-
ing algorithm for spline interpolation. In this paper,
we further utilize this connection for solving ODEs
and correspondingly derive a recursive filtering algo-
rithm. After obtaining spline coefficients, we can just
use the filter bank approach for spline wavelet de-
composition and reconstruction. Since the latter is a
well established result in wavelet theory [1], to save
space, we concentrate on the description of the recur-
sive spline filtering algorithm. Our experimental re-
sults show that the proposed spline wavelet approach
is very promising, and more importantly, to our best
knowledge this work is the first to exploit the connec-
tion between the two areas, namely, digital signal pro-
cessing and numerical methods for circuit simulation.

This paper is organized as follows. In section 2,
the important properties of linear digital system and
B-spline function are introduced, and the multireso-
lution analysis is also described. The proposed ap-
proach is presented in section 3, the applications are
given in 4, and the conclusions are given in section 5.

2 Preliminaries
2.1 Discrete-time Signal and z Transform

The space L2 of square-summarizable real-valued se-
quences {x(k)}k∈Z is a Hilbert space whose metric is
derived from the standard inner product: < x,h >=
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∑
k x(k) · h(k). The convolution operation between

two sequences x(n) ∈ L2 and h(n) ∈ L2 is defined
as:

x(n)∗h(n) =
∑

k

x(n−k)·h(k) =
∑

k

x(k)·h(n−k)

(1)
A well known result about the linear-time invariant
system is that the system output y(n) can be ob-
tained by the convolution of the system input x(n)
and the system impulse response h(n), i.e., y(n) =
x(n) ∗ h(n). Another way to characterize the se-
quence h(n) is by its z transform which is defined
by h(z) =

∑
k h(k) · z−k. The z transform of the

convolution of two sequences x(n) and h(n) can be
obtained by the product of the z transform of the two
sequences, i.e.,

y(n) = x(n) ∗ h(n) ⇔ y(z) = x(z) · h(z)

and the shifting property of z transform can be de-
scribed as:

y(n) = x(n− n0) ⇔ y(z) = x(z) · z−n0 (2)

2.2 Sampling and Discrete B-Splines
The time-marching methods for circuit simulation cal-
culate the system output at discrete points. If we treat
this computation process as a procedure of sampling
the solution variables, we can construct a connection
between the continuous-time linear system described
by the ordinary differential equations and the discrete-
time linear system described by the linear equations.
As we will show later, this is a very important step,
which enables us to directly apply those well estab-
lished results in digital signal processing theory to the
numerical methods for circuit simulation. For sim-
plicity and clarity, in this paper we only discuss the
method to compute the system output at the equidis-
tance points (i.e., a uniform sampling procedure is
used), and the case of a variable step length can be
discussed similarly.

Now assuming that the system output sequence
g(n) at those sampling points has been obtained, we
are concerned with the problem of how to interpolate
g(n) to approximate the true system output g(t). For
now, we focus on utilizing polynomial splines to ac-
complish this task [7, 2, 8]. The polynomial spline
functions of order i with unit spaced knots span a
space Si

1 which is a subspace of L2, where the su-
perscript i indicates the degree of the piecewise poly-
nomial segment, and the subscript 1 means that the
piecewise polynomial segments join at the unit spaced
knots. Another convenient way to represent Si

1 is
by using i-th order B-spline basis function, i.e.,Si

1 =

i 2 3
z-transform z−1+z−2

2
z−1+4z−2+z−3

6

Table 1: Example z transform of 2nd and 3rd B-
spline.

{gi(t) =
∑

k y(k)φ
i(t− k), (t ∈ R, y ∈ L2)}, where

φi(t) is the B-spline of order i with compact support
supp(φi(t)) = [0, i+ 1] and is defined as:

φi(t) =
i+1∑
j=0

(−1)j

i!

(
i+ 1
j

)
(t− j)i

+ (3)

and where the function ti+ is defined as:

ti+ =
{
ti, t ≥ 0
0, t < 0

(4)

Obviously any polynomial spline function gi(t) ∈
Si

1 can be written as a weighted sum of the shifted B-
spline, and the discrete-time sequence gi(n), n ∈ Z
can be obtained by:

gi(n) = gi(t)|t=n =
∑

k

y(k)φi(n− k)

=
∑

k

y(n− k)φi(k) = y(n) ∗ φi(n) (5)

where the sequence φi(n) is defined as φi(n) =
φi(t)|t=n, n ∈ [1, i], φi(n) is referred to as discrete
B-spline, which can be viewed as a finite impulse re-
sponse (FIR) filter and is totally described by its z
transform φi(z). Table 1 presents the z transform of
the 2nd order and 3rd order (cubic) B-spline. It can be
seen from (5) that the z transform of y(n) is obtained
by:

y(z) =
1

φi(z)
· gi(z) (6)

where gi(z) is the z transform of gi(n). The above
equation means that the coefficients sequence y(n)
can be recovered by applying an infinite impulse re-
sponse (IIR) filter 1/φi(z) to gi(n). To make this
clearer, next we give a simple example. Suppose
we use the cubic B-spline shown in Table 1, i.e.,
φ3(z) = z−1/6 + 2z−2/3 + z−3/6, plugging it into
(6), we will get y(z) = 6/(z−1 +4z−2 +z−3) ·g3(z).
Applying the inverse z transform to the above equa-
tion and using (2), we will get y(n − 1) = 6g3(n) −
4y(n−2)+y(n−3), therefore y(n) can be iteratively
calculated.

Now we derive a similar expression for the
sequence gi

1(n) which is defined as gi
1(n) =

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp83-89)



i 2 3
z-transform z−1 − z−2 z−1−z−3

2

Table 2: Example z transform of φi
1(n), i = 2, 3.

d gi(t)/d t|t=n,

d gi(t)
d t

=
∑

k

y(k)
dφi(t− k)

d t
=

∑
k

y(k)φi
1(t− k)

(7)
where φi

1(t) is defined as φi
1(t) = d φi(t)

d t , clearly
φi

1(t) is also a function with compact support
supp(φi

1(t)) = [0, i+ 1]. Now gi
1(n) can be obtained

from:

gi
1(n) =

∑
k

y(k)φi
1(n− k) =

∑
k

y(n− k)φi
1(k)

= y(n) ∗ φi
1(n) (8)

where φi
1(n) can also be viewed as a FIR filter applied

to y(n) to obtain gi
1(n). The example z transform of

φi
1(n), i = 2, 3 is given in Table 2.

Equations (5) and (8) mean that the sequences
gi(n) and gi

1(n) can be generated by applying the FIR
filters φi(n) and φi

1(n) to y(n), respectively. In the
following sections, we will show that these results
lead to a fast recursive filtering technique to solving
the ordinary differential equations.

2.3 Multiresolution Spaces and Multiresolu-
tion Analysis

The theory of multiresolution analysis (MRA) was
proposed by Meyer and Mallat as the most important
building block for the construction of scaling func-
tions and wavelet functions [5, 1], it also reveals the
fundamental connections between the wavelet theory
and the theory of multirate signal processing and fil-
ter banks. Simply put, MRA addresses the issue of
how to approximate a complicated function in L2

space at different resolutions or scales (obviously a
smaller scale means a larger resolution). In current
scenario, resolution level is directly related to the
number of uniform collocation or sampling points in
a unit length, a large number of sampling points indi-
cates a high resolution and vice versa. In this paper,
the sampling rate is set to 2J at resolution level J (or
scale level −J).

The function is projected onto a subspace VJ at
resolution level J , and these subspaces are called mul-
tiresolution spaces. In MRA the subspace at resolu-
tion level J + 1 always contains the subspace at res-
olution level J , more specifically, {0} ⊂ · · ·V0 ⊂
· · ·VJ ⊂ VJ+1 ⊂ · · ·L2, and all the multiresolution

spaces are spanned by an appropriately scaled ver-
sion of the same prototype scaling function φ(x). In
other words, at resolution level J , the integer trans-
lated functions

√
2

J
φ(2Jx − k), k ∈ Z form a Riesz

basis and span the multiresolution subspace VJ [5].
Additionally, if a function fJ(x) ∈ VJ , then its scaled
version fJ(2x) will reside in VJ+1.

In the multiresolution space VJ+1 there exists a
subspace WJ which is orthogonal to VJ , clearly the
direct sum of WJ and VJ form VJ+1,

VJ+1 = VJ ⊕WJ (9)

WJ is called wavelet subspace and is also generated
by a scaled version ψJ(x) of the prototype wavelet
function ψ(x), i.e.,WJ = span{

√
2

J
ψ(2Jx−k), k ∈

Z}. There are two fundamental relations between the
basis functions φJ(x) and ψJ(x) that generate VJ and
WJ , respectively, and the basis function φJ+1(x) that
generates VJ+1. The first one is referred to as two-
scale relation and is expressed as

φ(2Jx) =
∑

k

p0(k)φ(2J+1x− k)

ψ(2Jx) =
∑

k

p1(k)φ(2J+1x− k) (10)

and the second one is referred to as decomposition re-
lation and is expressed as

φ(2J+1x− l) =
∑

k

{h0(2k − l)φ(2Jx− k)

+ h1(2k − l)ψ(2Jx− k)} (11)

With (9), a function fJ+1(x) =∑
k yJ+1(k)φ(2J+1x − k) ∈ VJ+1 can be de-

composed into two orthogonal parts, namely,
fJ(x) =

∑
k yJ(k)φ(2Jx − k) ∈ VJ , and

qJ(x) =
∑

k wJ(k)ψ(2Jx − k) ∈ WJ . It can
be shown that by applying the two-scale relation (10)
and the decomposition relation (11), one can obtain

yJ(k) =
∑

l

h0(2k − l)yJ+1(l)

wJ(k) =
∑

l

h1(2k − l)yJ+1(l) (12)

and

yJ+1(k) =
∑

l

{p0(k − 2l)yJ(l) + p1(k − 2l)wJ(l)}

(13)
Equations (12) and (13) provide the decomposi-

tion process and the reconstruction process, respec-
tively. In signal processing perspective, the four se-
quences h0, h1, p0 and p1 can be viewed as filters (FIR
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h1
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yJ yJ-1 yJ-J'

wJ-1 wJ-J'

Figure 1: Fast decomposition tree

p02 p02
yJ-J' yJ-J'+1 yJ

p1

2

wJ-J'

p1

2

wJ-1

Figure 2: Fast reconstruction tree

or IIR), so the decomposition and reconstruction pro-
cedures are merely filtering operations. With this in
mind, (12) and (13) can be rewritten as

yJ(k) = (yJ+1(k) ∗ h0(k))↓2
wJ(k) = (yJ+1(k) ∗ h1(k))↓2 (14)

and

yJ+1(k) = (yJ(k))↑2 ∗ p0(k) + (wJ(k))↑2 ∗ p1(k)
(15)

where ↓2 is a downsampling operator which keeps the
even indexed samples and drops the odd indexed sam-
ples, and ↑2 is an upsampling operator which inserts
a 0 value between adjacent samples [5, 1]. By itera-
tively applying (14) and (15), we can obtain a decom-
position tree and a reconstruction tree shown in figures
1 and 2, respectively.

Interesting enough, an arbitrary order B-spline
function satisfies all the conditions needed to be a
scaling function and can be used to generate the mul-
tiresolution spaces. This also means that any function
in L2 space can always be approximated with arbitrar-
ily small approximation error at high enough a reso-
lution level, in other words, by increasing the sam-
pling rate we can approximate any L2 function with
the scaled B-spline function. Correspondingly, the
spline wavelet function ψJ(x) generates the wavelet
spaces WJ , J ∈ Z, according to (10), the proto-
type wavelet function ψ(k), k ∈ Z is obtained by
ψ(k) = (p1(k) ∗ φ(k))↓2, for an i-th order B-spline

function φi(x), p1(k) and p0(k) are two FIR filters
defined in [1].

3 The Proposed Approach
In this section, the proposed spline wavelet approach
is presented. According to the MRA theory, after we
obtain the spline coefficients at the highest resolution
level, we can always utilize a fast filter bank approach
to get the wavelet coefficients at various resolution
levels, so here we focus on developing the fast recur-
sive spline filtering method to solve ODEs at a desig-
nated resolution level.

3.1 Principles of the Recursive Spline Filter-
ing Approach

Suppose we want to numerically solve the following
first-order ordinary differential equations:{

Ad f(t)
d t + Cf(t) = u(t)

f(0) = f0
(16)

where f(t) is the unknown N -by-1 vector function,
u(t) is a known N -by-1 vector function, A = {aij}
and C = {cij} are two N -by-N constant matrices,
and f0 is the initial condition of f(t).

We obtain the collocation points f(tn) by uni-
formly sampling the time t with a sampling rate M ,
i.e., f(tn) = f(n/M), n ∈ Z. To utilize the recursive
filtering techniques, we do the following transform
g(t) = f(t/M), now the collocation points f(tn) will
become g(t)|t=n, and equation (16) can be rewritten
as: {

Adg(t)
d t + Bg(t) = x(t)

g(0) = f0
(17)

where B = {bij} = {cij/M} and x(t) = 1
M u(t/M).

With a high enough sampling rateM , the function
f(t) can be approximated satisfactorily by a function
gi(t) in Si

1,

gi(t) =
i∑

k=1

y(t− k) · φi(k) (18)

where y(t) = (y1(t) . . . yN (t))T is the coefficients
vector, correspondingly, the first order differentiation
of g(t) can be written as dg(t)

d t =
∑i

k=1 y(t − k) ·
φi

1(k). By denoting the row vector of A as AT
i , and

the row vector of B as BT
i , now the first equation of

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp83-89)



(17) becomes AT
1

...
AT

N

 ·
i∑

k=1

 y1(t− k)φi
1(k)

...
yN (t− k)φi

1(k)

 +

 BT
1
...

BT
N

 ·
i∑

k=1

 y1(t− k)φi(k)
...

yN (t− k)φi(k)

 = x(t) (19)

which means that for the l-th row, the following al-
ways holds:

i∑
k=1

AT
l

 y1(t− k)
...

yN (t− k)

φi
1(k)

 +

i∑
k=1

BT
l

 y1(t− k)
...

yN (t− k)

φi(k)

 = xl(t) (20)

It can be shown that the above equation is equal to:

N∑
j=1

i∑
k=1

(
aljφ

i
1(k) + bljφ

i(k)
)
yj(t− k) = xl(t)

(21)
since t indicates integer index, we have

i∑
k=1

(
aljφ

i
1(k) + bljφ

i(k)
)
yj(t− k) = ξlj(t) ∗ yj(t)

(22)
where ξlj(t) = aljφ

i
1(t)+bljφ

i(t). Now equation (21)
can be rewritten as

N∑
j=1

ξlj(t) ∗ yj(t) = xl(t) (23)

After applying the z transform, we obtain the follow-
ing equation:

ξ(z) · y(z) = x(z) (24)

where ξ(z) = {ξlj(z)}N×N , and

y(z) = (y1(z) . . . yN (z))T , x(z) = (x1(z) . . . xN (z))T

Clearly ξlj(z) is defined as ξlj(z) = aljφ
i
1(z) +

bljφ
i(z), and ξ(z) =

∑i
k=1(Aφ

i
1(k) + Bφi(k))z−k.

Plugging the above equation into (24) and ap-
plying the inverse z transform, we will have:∑i

k=1(Aφ
i
1(k) + Bφi(k))y(n − k) = x(n), which

can be rewritten as:

(Aφi
1(1) + Bφi(1))y(n− 1) = x(n)−

i∑
k=2

(Aφi
1(k) + Bφi(k))y(n− k) (25)

So it is clear that the coefficient vectors for the collo-
cation points can be obtained iteratively, given the ini-
tial values for y(n), n ∈ [−i,−1], as shown next, we
can exactly establish i equations to solve the i initials
values. Now we have y(n), the sequence gi(t)|t=n

can be obtained from:

gi(n) = y(n) ∗ φi(n) (26)

and it is well known that the above calculation can be
implemented with Fast Fourier Transform (FFT) for a
large sampling rate M .

3.2 A Cubic B-Spline Example
For a cubic B-spline example, ξlj(z) and ξ(z) are de-
fined as

ξlj(z) = (
1
2
alj +

1
6
blj)z +

4
6
blj + (

1
6
blj −

1
2
alj)z−1

ξ(z) = (
1
2
A+

1
6
B)z−1 +

4
6
Bz−2 +(

1
6
B− 1

2
A)z−3

with (25), we have:

(
1
2
A +

1
6
B) · y(n− 1) = x(n)− 4

6
B · y(n− 2)

−(
1
6
B− 1

2
A) · y(n− 3) (27)

So it is clear that the coefficient vectors for the col-
location points can be obtained iteratively, given the
initial values for y(−1), y(−2) and y(−3) which can
be obtained by let n = 0 in (25), let t = 0 in (18), and
let t = 0 after differentiating equation (17), i.e., 1

2A + 1
6B

4
6B

1
6B− 1

2A
1
6IN×N

4
6IN×N

1
6IN×N

A + 1
2B −2A A− 1

2B

 ·

 y(−3)
y(−2)
y(−1)

 =

 x(0)
f0

x′(0)

 (28)

4 Discussions and Examples
In this section, we give several examples to demon-
strate the applications of the proposed approach.
Since the wavelet decomposition (12) and reconstruc-
tion (13) are very easy to understand, here we only
give the applications of the proposed fast recursive
spline filtering approach.

An obvious application of the proposed approach
is that at a preset resolution level, if we want to extrap-
olate the function values at a higher resolution level,
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Figure 3: An example of extrapolation

it is just an upsampling operation followed by the FIR
filtering, i.e.,

f ′J(k) = (yJ(k))↑2 ∗ p0(k) ∗ φi(k) (29)

To illustrate this point let’s consider the following ex-
ample, {

d f
d t = −4f(t) + 2t2

f(0) = 1
(30)

and we want to find the function values in the closed
interval [0, 1]. Suppose the resolution level is set to 2
(the sampling rateM is 22 = 4, and the maximum ap-
proximation error is about 5%), by applying the pro-
posed approach and using (29), we will obtain Figure
3.

The second example is a 2nd-order RLC network
from [10] (pp. 926):[

d vc
d t
d il
d t

]
=

[
0 1/C

−1/L −R/L

] [
vc

il

]
+

[
0

1/L

]
E

where C = 58pF,R = 0.124Ω, L = 10pH . The
voltage output of the above RLC network is shown in
Figure 4.

The third example is from the classical work by
Pillage and Rohrer [6] (Fig. 26, pp. 365). Figure
5 is the results obtained with the proposed approach,
which is within 1% error of the Spice output.

5 Conclusions
An alternative spline wavelet approach to circuit sim-
ulation was proposed in this paper. The main differ-
ence between the proposed method and the wavelet
collocation method is that, in the collocation method
the underlying function is directly decomposed into

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−9

0

1

2

3

4

5

6

true values
obtained values

Figure 4: An example figure from [10]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−8

0

1

2

3

4

5

6

7

Figure 5: An example from [6]

the wavelet basis functions at all levels and a ma-
trix form is formulated, while in the proposed ap-
proach the MRA is applied, and the decomposition
is carried out in two steps, first the expansion coef-
ficients with respect to the scaling spline basis func-
tions at the highest resolution level are obtained using
the fast recursive filtering approach, then the wavelet
coefficients at all levels are obtained by applying the
fast decomposition algorithm (14). An obvious ad-
vantage of the proposed approach is that it is highly
structured, therefore hardware implementation will be
much more easier, the proposed approach is also bet-
ter in terms of the computation complexity. Addition-
ally, the connection between digital signal processing
theory and numerical methods for circuit simulation
was also exploited.
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