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Abstract: The aim of this paper is to analyze the axisymmetric unsteady flow of an incompressible gen-
eralized Newtonian fluid in a straight rigid and impermeable tube with circular cross-section of constant
radius. To study this problem, we use an approach based on the Cosserat theory (also called director the-
ory) related to fluid dynamics which reduces the exact three-dimensional equations to a system depending
only on time and on a single spatial variable. From this system we obtain for a flow without swirling
motion the relationship between mean pressure gradient and volume flow rate over a finite section of the
pipe for the specific case of the power law viscosity function. Moreover, we compare the 3D exact solution
for steady volume flow rate with the corresponding solution obtained by the Cosserat theory using nine
directors.

Key–Words: Cosserat theory, nine directors, steady solution, axisymmetric motion, volume flow rate,
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1 Introduction

Generalized Newtonian fluids are inelastic non-
Newtonian fluids for which the viscosity is shear-
dependent and that can be written as a function
of the modulus of the symmetric velocity gradi-
ent. If the shear viscosity function increases with
shear rate, the corresponding fluids are shear-
thickening (or dilatant) while fluids with viscos-
ity decreasing monotonically with shear rate are
fluids termed shear-thinning (or pseudoplastic).
Examples of non-Newtonian fluids abound in in-
dustry and nature, and include fluid suspensions,
emulsions, polymeric fluids, magma, food prod-
ucts or biological fluids such as blood which is a
complex fluid with shear-thinning behavior (see
e.g. Chien et al. [4], [5]). The development and
study of mathematical models for non-Newtonian
fluids is a very rich field of research with many fas-
cinating problems. We refer to the monographs
[1], [22], [21] for relevant issues related to non-
Newtonian fluids behavior and modeling.

In this paper we introduce a 1D model for gen-
eralized Newtonian flows in an axisymmetric pipe,
based on the nine-director approach developed
by Caulk and Naghdi [3]. This theory includes
an additional structure of directors (deformable
vectors) assigned to each point on a space curve

(Cosserat curve). It is a one-dimensional theory
since a 3D system of equations is replaced by a
system of equations depending on time and on a
single spatial variable. The idea of using directors
in continuum mechanics goes back to Duhen [8]
who regards a body as a collection of points to-
gether with directions associated to them. Theo-
ries based on such a model of an oriented medium
were further developed by Cosserat brothers [6],
[7] and have been also used by several authors in
studies of rods, plates and shells (see e.g. Erick-
sen and Truesdell [9], Truesdell and Toupin [19],
Toupin [20], Ericksen [10], Green et al. [14], [13]
and Naghdi [16]). An analogous hierarchial the-
ory for unsteady and steady flows has been de-
veloped more recently by Caulk and Naghdi [3]
in straight pipes of circular cross-section and by
Green and Naghdi [15] in channels. The same the-
ory was applied to unsteady viscous fluid flow in
curved pipes of circular and elliptic cross-section
by Green et al. [11], [12]. Recently, a director
theory approach for modeling blood flow in the
arterial system, as an alternative to the classi-
cal 1D models, has been introduced by Robertson
and Sequeira [18].

The relevance of using a theory of directed
curves is not in regarding it as an approxima-

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp303-308)



tion to three-dimensional equations, but rather in
their use as independent theories to predict some
of the main properties of the three-dimensional
problems. Advantages of the director theory in-
clude: (i) the theory incorporates all components
of the linear momentum; (ii) it is a hierarchical
theory, making it possible to increase the accu-
racy of the model; (iii) there is no need for closure
approximations; (iv) invariance under superposed
rigid body motions is satisfied at each order and
(v) the wall shear stress enters directly in the for-
mulation as a dependent variable.

In this paper we are interested in studying
the initial boundary value problem for an incom-
pressible homogeneous power law fluid model in
a straight circular rigid and impermeable tube
with constant radius where the fluid velocity field,
given by the director theory, can be approximated
by the following finite series:1

v∗ = v +
k∑

N=1

xα1 . . . xαN W α1...αN , (1)

with

v = vi(z, t)ei, W α1...αN = W i
α1...αN

(z, t)ei. (2)

Here, v represents the velocity along the axis of
symmetry z at time t, xα1 . . . xαN are the polyno-
mial weighting functions with order2 k, the vec-
tors W α1...αN are the director velocities which are
completely symmetric with respect to their in-
dices and ei are the associated unit basis vectors.
When we use the director theory, the 3D system
of equations governing the fluid motion is replaced
by a system which depends only on a single spa-
tial and time variables, as previously mentioned.
From this new system, we obtain the unsteady
relationship between mean pressure gradient and
volume flow rate, and the correspondent equation
for the wall shear stress.

The goal of this paper is to develop a nine-
director theory (k = 3 in equation (1)) for the
steady flow of a power law fluid in a straight pipe
with constant radius to compare the correspond-
ing volume flow rate with the 3D exact solution
given in [1].

1Throughout the paper, Latin indices subscript take the
values 1, 2, 3, Greek indices subscript 1, 2, and the usual
summation convention is employed over a repeated index.

2The number k identifies the order of hierarchical theory
and is related to the number of directors.

2 Governing Equations

We consider a homogeneous fluid moving within
a circular straight and impermeable tube, the do-
main Ω (see Fig.1) subset of the three-dimensional
space R3. Its boundary ∂Ω is composed by dif-
ferent parts, namely the proximal cross-section
Γ1 (upstream part of the tube), the distal cross-
section Γ2 (downstream district of the tube) and
the lateral wall of the tube, denoted by Γw.

Figure 1: Fluid domain Ω with the components of the
surface traction vector τ1, τ2 and pe.

Let xi (i = 1, 2, 3) be the rectangular Carte-
sian coordinates and for convenience set x3 = z.
Consider the axisymmetric motion of an incom-
pressible fluid without body forces, inside a sur-
face of revolution, about the z axis and let φ(z, t)
denote the instantaneous radius of that surface
at z and time t. The three-dimensional equa-
tions governing the fluid motion are given in
Ω′ = Ω× (0, T ) by3





ρ
(∂v∗

∂t
+ v∗,iv

∗
i

)
= ti,i,

in Ω′,
v∗i,i = 0,

ti = −p∗ei + σijej , t = ϑ∗i ti,

(3)

with the initial condition

v∗(x, 0) = v0(x) in Ω, (4)

and the boundary condition

v∗(x, t) = 0 on Γw × (0, T ), (5)

where v∗ = v∗i ei is the velocity field and ρ is the
constant fluid density. Equation (3)1 represents
the balance of linear momentum and (3)2 is the
incompressibility condition. In equation (3)3, p∗

3Here and in the sequel we use the notation v∗i,j =
∂v∗i /∂xj and v∗,iv

∗
i = v∗i ∂v∗/∂xi adopted in Naghdi et al.

[3], [11], [12].
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is the pressure and σij are the components of the
extra stress tensor. For a generalized Newtonian
fluid the components of the extra stress tensor are
given by

σij = µ(|γ̇|)(v∗i,j + v∗j,i
)
, i, j = 1, 2, 3

where γ̇ is the shear rate and

µ(|γ̇|) : R+ → R+

is the shear rate dependent viscosity function.
In the case of a power law fluid model the

viscosity function is given by

µ(|γ̇|) = k|γ̇|n−1 (6)

where the parameters k and n are the consistency
and the flow index (positive constants), respec-
tively. If n = 1 in (6), the viscosity is a constant
µ = k and the fluid is Newtonian. If n < 1 then

lim
|γ̇|→∞

µ(|γ̇|) = 0, lim
|γ̇|→0

µ(|γ̇|) = ∞,

and we have a shear-thinning fluid. For n > 1 we
get

lim
|γ̇|→∞

µ(|γ̇|) = ∞, lim
|γ̇|→0

µ(|γ̇|) = 0,

and the fluid is shear-thickening. This theoretical
model has limited applications to real fluids due
to the unboundedness of the viscosity asymptotic
limits.

In (3)3, t denotes the stress vector on the sur-
face whose outward unit normal is ϑ∗ = ϑ∗i ei, and
ti are the components of t. The initial velocity
field v0 is assumed to be known.

The lateral surface Γw of the axisymmetric
domain is defined by

φ2 = xαxα, (7)

and the components of the outward unit normal
to this surface are

ϑ∗α =
xα

φ
(
1 + φ2

z

)1/2
, ϑ∗3 = − φz(

1 + φ2
z

)1/2
, (8)

where a subscript variable denotes partial differ-
entiation. Since equation (7) defines a material
surface, the velocity field must satisfy the condi-
tion

φφt + φφzv
∗
3 − xαv∗α = 0 (9)

at the boundary (7).

Let us consider S(z, t) as a generic axial sec-
tion of the domain at time t defined by the spatial
variable z and bounded by the circle defined in (7)
and let A(z, t) be the area of this section S(z, t).
The volume flow rate Q is defined by

Q(z, t) =
∫

S(z,t)
v∗3(x1, x2, z, t)da, (10)

and the average pressure p̄ is defined by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)
p∗(x1, x2, z, t)da. (11)

In what follows, this general framework will be
applied to the specific case of the nine-director
theory in a rigid pipe.

2.1 Cosserat Theory with Nine Direc-
tors

Starting with representation (1) it follows from
[3], that the approximation of the three-
dimensional velocity field v∗ = v∗i (x1, x2, z, t)ei

using nine directors, is given by

v∗ =
[

x1(ξ + σ(x2
1 + x2

2))− x2(ω + η(x2
1 + x2

2))
]
e1

+
[

x1(ω + η(x2
1 + x2

2)) + x2(ξ + σ(x2
1 + x2

2))
]
e2

+
[

v3 + γ(x2
1 + x2

2)
]
e3 (12)

where ξ, ω, γ, σ, η are scalar functions of the spa-
tial variable z and time t. The physical signifi-
cance of these scalar functions in (12) is the fol-
lowing: γ is related to tranverse shearing motion,
ω and η are related to rotational motion (also
called swirling motion) about e3, while ξ and σ
are related to transverse elongation.

Now, using the boundary condition (5), the
velocity field (12) on the surface (7) is given by

ξ + φ2σ = 0, ω + φ2η = 0, v3 + φ2γ = 0. (13)

The incompressibility condition (3)2 applied to
the velocity field (12), can be written as

(v3)z + 2ξ + xαxα

(
γz + 4σ

)
= 0. (14)

For equation (14) to hold at every point in the
fluid, the velocity coefficients must satisfy the con-
ditions

(v3)z + 2ξ = 0, γz + 4σ = 0. (15)

Taking into account (13)1,3, these separate condi-
tions (15), reduce to

(v3)z + 2ξ = 0,
(
φ2v3

)
z

= 0. (16)
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Moreover, replacing the velocity field (12) in con-
dition (9) defined at the boundary (7), we get

φt +
(
v3 + φ2γ

)
φz −

(
ξ + φ2σ

)
φ = 0. (17)

Let us now consider flow in a rigid tube, i.e.

φ = φ(z), (18)

without swirling motion (ω = η = 0). From (18)
and (13) we verify that the kinematic condition
(17) is satisfied identically. Conditions (10), (12),
(13)3 and (16)2 imply that the volume flow rate
Q is a function of time t, given by

Q(t) =
π

2
φ2(z)v3(z, t). (19)

Then, for a flow in a rigid tube without rotation
with volume flow rate (19) and verifying condi-
tions (13)1,3 and (16)1, the velocity field (12) be-
comes

v∗ =
[
x1

(
1− x2

1 + x2
2

φ2

)2φzQ

πφ3

]
e1

+
[
x2

(
1− x2

1 + x2
2

φ2

)2φzQ

πφ3

]
e2

+
[ 2Q

πφ2

(
1− x2

1 + x2
2

φ2

)]
e3, (20)

and the inicial condition (4) is satisfied, when we
consider Q(0) = ct.

Moreover, the stress vector on the lateral sur-
face Γw is given by

tw =
[ 1
φ(1 + φ2

z)1/2

(
τ1x1φz − pex1

− τ2x2(1 + φ2
z)

1/2
)]

e1

+
[ 1
φ(1 + φ2

z)1/2

(
τ1x2φz − pex2

+ τ2x1(1 + φ2
z)

1/2
)]

e2

+
[ 1
(1 + φ2

z)1/2

(
τ1 + peφz

)]
e3. (21)

Instead of satisfying the momentum equation (3)1
pointwise in the fluid, we impose the following
integral conditions

∫

S(z,t)

[
ti,i − ρ

(∂v∗

∂t
+ v∗,iv

∗
i

)]
da = 0, (22)

∫

S(z,t)

[
ti,i − ρ

(∂v∗

∂t
+ v∗,iv

∗
i

)]
xα1 . . . xαN da = 0,

(23)

where N = 1, 2, . . . , k.
Using the divergence theorem and integration

by parts, equations (22)− (23) for nine directors,
can be reduced to the four vector equations (k =
3):

∂n

∂z
+ f = a, (24)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (25)

where n, kα1...αN , mα1...αN are resultant forces
defined by

n =
∫

S
t3da, kα =

∫

S
tαda, (26)

kαβ =
∫

S

(
tαxβ + tβxα

)
da, (27)

kαβγ =
∫

S

(
tαxβxγ + tβxαxγ + tγxαxβ

)
da,

(28)

mα1...αN =
∫

S
t3xα1 . . . xαN da. (29)

The quantities a and bα1...αN are inertia terms
defined by

a =
∫

S
ρ
(∂v∗

∂t
+ v∗,iv

∗
i

)
da, (30)

bα1...αN =
∫

S
ρ
(∂v∗

∂t
+ v∗,iv

∗
i

)
xα1 . . . xαN da,

(31)

and f , lα1...αN , which arise due to surface traction
on the lateral boundary, are defined by

f =
∫

∂S

(
1 + φ2

z

)1/2
twds, (32)

lα1...αN =
∫

∂S

(
1 + φ2

z

)1/2
twxα1 . . . xαN ds. (33)

These quantities will be used to calculate the
equation for the average pressure as a function of
the volume flow rate, using the director approach.
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3 Results

In this section we compare the 3D exact solution
for steady volume flow rate (see [1]) with the cor-
responding solution obtained by the Cosserat the-
ory using nine directors in the case of a straight
circular rigid and impermeable tube with constant
radius, i.e. φ = ct, for a general flow index n.

Replacing (26) − (33), obtained for the nine-
director model, into equations (24)− (25) we get
the unsteady relationship4

p̄z(z, t) = −4ρQ̇(t)
3πφ2

− 4k
(
2

5n+1
2

)
Qn(t)

(n + 3)πnφ3n+1
(34)

and the correspondent wall shear stress

τ1 = −ρQ̇(t)
6πφ2

− k
(
2

5n+1
2

)
Qn(t)

(n + 3)πnφ3n
.

Integrating equation (34), over a finite section of
the tube, between z1 and position z2 (z1 < z2),
we get the mean pressure gradient

G(t) =
4ρQ̇(t)
3πφ2

+
4k

(
2

5n+1
2

)
Qn(t)

(n + 3)πnφ3n+1
(35)

where
G(t) =

p̄(z1, t)− p̄(z2, t)
z2 − z1

.

From (35), the volume flow rate in the steady case
is given by

Q9directors =
(n + 3)1/nπφ3

2
5n+3
2n

(φG

2k

)1/n
. (36)

In order to evaluate the flow predictions of the
nine-director theory developed here, we next con-
sider the exact three-dimensional volume flow rate
of an axisymmetric steady flow through a straight
tube with circular cross-section of constant radius
φ and length z2 − z1, given by (see [1])

Q3D =
πφ3

(1/n) + 3
(φG

2k

)1/n
. (37)

Shown in Fig.2 is the normalized nine-director
solution (36) by the three-dimensional solution
(37), given by

Q9directors

Q3D
=

(3n + 1)(n + 3)1/n

n
(
2

5n+3
2n

) , (38)

versus the flow index n.
4We use the notation Q̇ for time differentiation.

Figure 2: Normalized volume flow rate (38) as a function
of the flow index n for straight circular tube with constant
radius.

Finally, Table 1 shows the error obtained
when solution (36) is compared with the 3D exact
solution (37). For both shear-thinning and shear-
thickening fluids we observe a good quantitative
agreement, when the index flow n is close to one.

shear-thinning shear-thickening

n 0.7 0.8 0.9 1.1 1.2 1.3

error 0.4% 0.2% 0.1% 0.1% 0.2% 0.3%

Table 1: The error of the nine-director aproximation re-
lated with the index flow n.

4 Conclusion

The predictive capability of a nine-director theory
applied to study the axsymmetric unsteady flow
behavior of a power law fluid in a straight pipe
with uniform circular cross-section has been eval-
uated by comparing its solution with the 3D exact
solution for steady flows. A good match of the re-
sults for a range of power-law indices close to one
is in agreement with the established theory for
incompressible Newtonian fluids in straight pipes
([3], [18]). This theory has strong limitations for
sufficiently low and/or high index flow n. The
case of a tube with non constant radius is more
difficult to handle, specially for a shear thinning
viscosity, due to singularities appearing in some
of the integral equations. One of the important
extensions of this work is the application of the
Cosserat theory to blood flows in both rigid and
flexible walled straight and curved vessels, and in
vessels with branches or bifurcations. More de-
tailed discussion of these issues can be found in
[2].
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