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Abstract:The usefulness of fuzzy input fuzzy output functions and their interpolation/approximation by different
operators in fuzzy control motivate their deeper theoretical study. We obtain some properties of fuzzy B-spline
series such as variation and uncertainty diminishing property. We also propose spline approximation of fuzzy
input fuzzy output functions.
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1 Introduction

The idea of interpolation is present in fuzzy logic from
the very beginning. For example in [19] it is proposed
the problem of interpolating some fuzzy data. Since
then many results in this sense are obtained (see e.g.
[8], [14]). Also, the idea of exploiting approximation
capabilities of fuzzy systems in practice is present in
the literature implicitly (not always explicitly) from
the very beginning of fuzzy control (the output of a
fuzzy controller can be regarded as a function that ap-
proximates some target function).

An important approach to fuzzy control is the in-
terpolative control. As controllers of this type we
mention the controllers with conditionally firing rules
([16]) and the Ḱoczy-Hirota, [9] interpolators based
on Shepard-type operators.

In many recent papers universal approximation
properties of fuzzy systems, fuzzy neural networks,
fuzzy polynomials are studied (see e.g. [10], [7], [3],
[12]).

Splines are widely applied in many different
fields of the classical mathematics. Fuzzy spline-type
interpolation or approximation is a relatively unex-
ploited field both from theoretical and practical point
of view. Fuzzy spline interpolation of crisp input
fuzzy number output functions was introduced in [8],
natural and complete spline approximation were stud-
ied in [1] and [2]. Also, fuzzy B-spline series were in-
troduced in [4] and they were successfully applied to
digital terrain modeling. Recently a theoretical study
of the approximation by fuzzy B-spline series was
given in [5]. Here, error estimates are obtained for
approximation of fuzzy-number-valued functions by

fuzzy B-spline series.
All the papers on fuzzy splines mentioned above

have crisp input (only the values of the function are
fuzzy). So naturally raises the question if we could
extend the fuzzy splines to the case of fuzzy inputs.
We study this question in the present paper. The most
natural way to extend the fuzzy B-splines to the case
of fuzzy input fuzzy output splines is to use Zadeh’s
extension principle.

After a preliminary section, in Section 3, we
present some results on crisp input fuzzy output
splines such as variation and uncertainty diminishing
property, then in Section 4 we introduce and study
fuzzy input fuzzy output splines. In Section 5, we
present some conclusions and proposals of further re-
search topics.

2 Preliminaries

Let us denote byRF the set of fuzzy numbers, i.e.
fuzzy subsets of the real axisR satisfying the follow-
ing properties:

(i) ∀u ∈ RF , u is normal i.e. ∃xu ∈ R with
u (xu) = 1;

(ii) ∀u ∈ RF , u is convex fuzzy set
(i.e. u (tx + (1− t) y) ≥ min {u (x) , u (y)}, ∀t ∈
[0, 1] , x, y ∈ R);

(iii) ∀u ∈ RF , u is upper semi-continuous onR;
(iv) {x ∈ R : u (x) > 0} is compact, whereA de-

notes the closure ofA.
ThenRF is called the space of fuzzy numbers.

ObviouslyR ⊂ RF , because any real numberx0 ∈ R,

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp194-199)



can be described as the fuzzy number whose value is
1 for x = x0 and0 otherwise.

For 0 < α ≤ 1 and u ∈ RF let [u]α =
{x ∈ R;u (x) ≥ α} and [u]0 = {x ∈ R; u (x) > 0}.
Then it is well known that for eachα ∈ [0, 1], [u]α =
[uα, uα] is a bounded closed interval (uα, uα denote
the endpoints of theα−level set). Foru, v ∈ RF and
λ ∈ R, we have the sumu ⊕ v and the productλ · u
defined by[u⊕ v]α = [u]α + [v]α, [λ · u]α = λ [u]α,
∀α ∈ [0, 1], where[u]α + [v]α means the usual ad-
dition of two intervals (as subsets ofR) and λ [u]α

means the usual product between a scalar and a subset
of R.

A fuzzy numberu ∈ RF is said to be positive if
u1 ≥ 0, strict positive ifu1 > 0, negative ifu1 ≤ 0
and strict negative ifu1 < 0. We say thatu and v
have the same sign if they are both positive or both
negative. Ifu is positive (negative) thenªu = (−1)·u
is negative (positive).

A special class of fuzzy numbers is the class of
triangular fuzzy numbers. Givena ≤ b ≤ c, a, b, c ∈
R, the triangular fuzzy numberu = (a, b, c) deter-
mined bya, b, c is given such thatuα = a + (b− a)α
anduα = c−(c−b)α, for all α ∈ [0, 1]. Thenu0 = a,
u1 = u1 = b andu0 = c.

DefineD : RF × RF → R+ ∪ {0} by

D (u, v) = sup
α∈[0,1]

max {|uα − vα| , |uα − vα|} .

The following properties are known:
D (u⊕ w, v ⊕ w) = D (u, v), ∀u, v, w ∈ RF
D (k · u, k · v) = |k|D (u, v) , ∀u, v ∈

RF , ∀k ∈ R;
D (u⊕ v, w ⊕ e) ≤ D (u,w) +

D (v, e) , ∀u, v, w, e ∈ RF and (RF , D) is a
complete metric space.

Also, the following is known.

Theorem 1 (i) If we denotẽ0 = χ{0} then0̃ ∈ RF is
neutral element with respect to⊕, i.e. u⊕0̃ = 0̃⊕u =
u, for all u ∈ RF .

(ii) With respect tõ0, none ofu ∈ RF \ R has
opposite inRF (with respect to⊕).

(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0,
and anyu ∈ RF , we have

(a + b) · u = a · u⊕ b · u .

For generala, b ∈ R, the above property does not
hold.

(iv) For anyλ ∈ R and anyu, v ∈ RF , we have

λ · (u⊕ v) = λ · u⊕ λ · v .

(v) For anyλ, µ ∈ R and anyu ∈ RF , we have

λ · (µ · u) = (λ · µ) · u .

(vi) If we denote‖u‖F = D
(
u, 0̃

)
, ∀u ∈ RF ,

then‖·‖F has the properties of an usual norm onRF ,
i.e. ‖u‖F = 0 iff. u = 0̃, ‖λ · u‖F = |λ| · ‖u‖F
and‖u⊕ v‖F ≤ ‖u‖F + ‖v‖F , | ‖u‖F − ‖v‖F | ≤
D (u, v).

The uniform distance between fuzzy-number-
valued functions is defined by

D(f, g) = sup{D(f(x), g(x)|x ∈ [a, b]}

for f, g : [a, b] → RF .
For f : [a, b] → RF . The functionω(f, ·) :

R+ → R

ω(f, δ) = sup{D(f(x), f(y))

|x, y ∈ [a, b], |x− y| ≤ δ}
is called the modulus of continuity of the fuzzy-
number-valued functionf.

The fuzzy splines as introduced by [8], are given
below. LetSl be the family of all splines of order
l with the knotsti, i = 0, 1, ..., n. Thenfs(x) =∑n

i=0 si(x) · ui, wheresi ∈ Sl is the crisp spline
interpolating the data(xi, fj), j = 0, 1, ..., n, where
fj = 1 if i = j and0 otherwise, andui ∈ RF are
fuzzy constants.

3 Approximation by Fuzzy B-Spline
series

Firstly, let us recall the definitions of the crisp B-
splines. Lett0 ≤ t1 ≤ .... ≤ tr be points inR, with
tr 6= t0. The B-splineM is given by

M(x) = M(x; t0, ..., tr) = r[t0, ..., tr](· − x)r−1
+ ,

(1)
where[t0, ..., tr]f denotes the divided difference off
(see e.g. [6, p. 137]).

The B-splineN is defined by

N(x; t0, ..., tr) =
1
r
(tr − t0)M(x; t0, ..., tr). (2)

The fuzzy B-spline series are defined as follows (see
[4]).

Let A = [a, b] or A = R. Let T = (ti) be a
sequence of points inA called basic knots satisfying
ti ≤ ti+1 andti < ti+r, for any ti ∈ A, i = 0, ..., n
if A = [a, b] andi ∈ Z if A = R. If A = [a, b] we
need some auxiliary knotst−r+1 ≤ ... ≤ t0 = a and
b = tn+1 ≤ ... ≤ tn+r. To a given sequence of knots
corresponds a sequence of crisp B-splinesNj(x) =
N(x; tj , ..., tj+r), for j ∈ Λ, whereΛ = Z if A = R
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andΛ = {−r + 1, ..., n} if A = [a, b]. A fuzzy B-
spline series onA (A = R or A = [a, b]) having knots
in T = (ti), i ∈ Λ is a functionS : A → RF , of the
form

S(x) =
∑

j∈Λ

Nj(x) · cj ,

wherecj ∈ RF .
It is easy to see that the functionS is continuous

in the Hausdorff distance. In what follows we present
variation and uncertainty diminishing property.

Let us recall two useful properties of crisp B-
splines (see e.g. [6]).

Nj(x) ≥ 0 for x ∈ [tj , tj+r]

andN(x) = 0 for x /∈ [tj , tj+r] (3)

The following identity holds
∑

j∈Λ

Nj(x) = 1. (4)

We say that a fuzzy-number-valued function
changes sign in[x0, x1] if f(x0) is negative (positive)
andf(x1) is positive (negative).

Theorem 2 A fuzzy B-spline seriesS(x) =∑
j∈Λ Nj(x) · cj has the variation diminishing

property, i.e. S changes its sign at most as many
times as the sequence(cj)j∈Λ changes it’s sign.

Proof. We observe that sinceNj(x) ≥ 0 for anyx ∈
A andj ∈ Λ, we have

S(x)1 =
∑

j∈Λ

Nj(x)cj
1

and
S(x)

1
=

∑

j∈Λ

Nj(x)cj
1,

wherecj
1 andcj

1 are the endpoints of the 1-level set
of the fuzzy numbercj ∈ RF . By variation diminish-
ing property of crisp splines it is easy to see thatS(x)1

changes its sign at most as many times as the sequence

cj
1changes sign. Analogously,S(x)

1
changes its sign

as many times ascj
1 does. Now the conclusion of

the theorem is immediate if we observe that(cj)j∈Λ

changes its sign if and only ifcj
1andcj

1 change their
signs.

Next we prove the uncertainty diminishing prop-
erty. We denote bylen(u) the length of the support of
the fuzzy numberu ∈ RF , i.e. len(u) = u0−u0. It is
easy to see thatlen(u) interpreted from a possibilistic
point of view can be regarded as the uncertainty of the
fuzzy numberu.

Theorem 3 A fuzzy B-spline seriesS(x) =∑
j∈Λ Nj(x) · cj has the uncertainty diminish-

ing property, i.e. the length of the support ofS(x)
does not exceed the maximum length of the support of
the fuzzy numberscj . (the length of the support of a
fuzzy number can be interpreted as the uncertainty on
it).

Proof. As in the proof of the previous theorem we
have

S(x)0 =
∑

j∈Λ

Nj(x)cj
0,

S(x)
0

=
∑

j∈Λ

Nj(x)cj
0

and we get

len(S(x)) = S(x)
0 − S(x)0

=
∑

j∈Λ

Nj(x) · len(cj)

≤ max
j∈Λ

len(cj).

Remark 4 We observe that the splines defined by [8]
cannot be written as fuzzy B-spline series. Indeed, by
Curry-Schoenberg theorem (see e.g. [6]), the crisp
B-splines are a basis for the Schoenberg space of all
splines. Letsi be the splines in Definition 2. Then

si(x) =
∑

j∈Λ

Nj(x)dij ,

with dij ∈ R. Letfs be as in Definition 2. Then

fs(x) =
n∑

i=0

si(x) · ui =
n∑

i=0


∑

j∈Λ

Nj(x)dij


 · ui,

whereui ∈ RF , i = 0, ..., n. By Theorem 1, (iii) the
two sums cannot be interchanged, because the splines
si (and so also the coefficientsdij) change their sign
at each knot. Changing the order of the sums is possi-
ble if all dij have the same sign forj ∈ Λ. The same
remark is true for fuzzy splines defined in [1] and [2].

Remark 5 Let us observe that the fuzzy B-spline se-
riesS(x) =

∑
j∈Λ Nj(x) · cj can be easily computed

by using fuzzy arithmetic (i.e. addition of fuzzy num-
bers and multiplication of a fuzzy number by a crisp
real).

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp194-199)



The approximation of a continuous fuzzy-
number-valued functionf : [a, b] → RF by some
fuzzy B-spline seriesS : [a, b] → RF is proposed in
[4], [11] from a practical point of view, and it was suc-
cessfully applied to digital terrain modeling. The the-
oretical study of approximation properties is given in
[5]. Let us recall some definitions and properties that
will be useful in what follows. Letf : [0, 1] → RF
be the target function. We consider the sequence of
knots0 < t1 ≤ .... ≤ tn < 1, and auxiliary knots
t−r+1 ≤ .... ≤ t0 = 0, 1 = tn+1 ≤ .... ≤ tn+r.
Let ξj ∈ [0, 1] ∩ suppNj , j = −r + 1, ..., n (where
suppNj = {x ∈ [0, 1] : Nj(x) 6= 0}). Then we
consider the fuzzy B-spline series

S(f, x) =
n∑

j=−r+1

Nj(x) · f(ξj). (5)

Let alsoδ = max0≤j≤n(tj+1 − tj).
We observe that everything is also valid forf :

[a, b] → RF . Approximation properties of fuzzy B-
spline series are given in the following theorem.

Theorem 6 For f : [0, 1] → RF continuous we have:

D(f(x), S(f, x)) ≤ rω(f, δ),

whereω(f, δ) is the modulus of continuity of the func-
tion f.

Better estimates can be obtained for fuzzy splines
of Schoenberg type (for crisp Schoenberg splines see
e.g. [17], [15]). Let the knots and auxiliary knots
given as above, andξj = tj+1+...+tj+r−1

r−1 , j = −r +
1, ..., n. We define the fuzzy spline of Schoenberg
type

S(f, x) =
n∑

j=−r+1

Nj(x) · f(ξj).

If we have given fuzzy data(ξj , f(ξj)), j = −r +
1, ..., n, ξj being the nodes, then the sequence of knots
tj , j = −r+1, ..., n considered for the fuzzy Schoen-
berg splines is as in the crisp case a linear functional of
the nodes (see [17], [15]). If there are no basic knots in
the interior of the interval[0, 1] then the fuzzy Schoen-
berg spline reduces to the fuzzy Bernstein polynomial
similar to the crisp case, so the results of this paper ex-
tend the results in [12]. As in [15] we obtain the error
bound in approximation by fuzzy splines of Schoen-
berg type:

Theorem 7 Concerning the error in approximation
by fuzzy Schoenberg splines we have:

D(f(x), S(f, x)) ≤ (1 + h(r, δ))ω(f, δ), (6)

where

h(r, δ) = min
{

1√
2r − 2

,

√
r

12
δ

}
. (7)

Particularly simple error bounds can be obtained
for fuzzy splines of Schoenberg type with equally
spaced knots and for dyadic fuzzy splines of Schoen-
berg type.

Corollary 8 For fuzzy splines of Schoenberg type
with equally spaced knots we have

D(f(x), S(f, x)) ≤
(

1 + h

(
r,

1
n

))
ω

(
f,

1
n

)
,

whereh(r, δ) as in (7).

Corollary 9 For dyadic fuzzy splines of Schoenberg
type (i.e. having the knotstj = j ·2−n, j = 1, ..., 2n−
1) we have

D(f(x), S(f, x)) ≤
(

1 + h

(
r,

1
2n

))
ω

(
f,

1
2n

)
,

whereh(r, δ) as in (7).

4 Fuzzy input fuzzy output spline ap-
proximation

The main problem of fuzzy control is that given a
fuzzy rule base i.e. fuzzy IF-THEN rules:

IF ξj THEN f(ξj)

find an outputf(x) for any inputx. The fuzzy sets
ξj are called the typical inputs, whilef(ξj) are called
the typical outputs. Shepard-type operators are used
in the case of Ḱoczy-Hirota interpolators. In this sec-
tion we propose B-spline approximation as solution
of the same problem. The wide applicability of fuzzy
controllers motivate this study.

In order to define the fuzzy input fuzzy output B-
spine series we will use Zadeh’s extension principle
([19]) and the Stacking Theorem.

Theorem 10 If u ∈ RF then
(i) [u]α is a closed and bounded interval for any

α ∈ [0, 1] ;
(ii) 0 ≤ α1 ≤ α2 ≤ 1 implies[u]α2 ⊆ [u]α1 ;
(iii) for any (αn)n∈N ⊂ [0, 1] converging in-

creasingly toα ∈ [0, 1] , ∩
n∈N

[u]αn = [u]α .

Conversely, if{Mα;α ∈ [0, 1]} fulfills (i)− (iii)
there exists an uniqueu ∈ RF such that[u]α = Mα

for α ∈ (0, 1] and[u]0 ⊆ M0.
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Let K be a compact subset ofRF such that any
u ∈ K has its support in the[0, 1] interval (we sayK
is lying in the [0, 1] interval. Letf : K → RF be a
continuous target function. We consider the sequence
of knots0 < t1 ≤ .... ≤ tn < 1, and auxiliary knots
t−r+1 ≤ .... ≤ t0 = 0, 1 = tn+1 ≤ .... ≤ tn+r.
Let Nj(x) be the crisp B-splines defined as in eq. (2).
Let ξj be the typical inputs andf(ξj) be the typical
outputs. Let us suppose thatξj ∈ K ∩ suppNj ,
j = −r + 1, ..., n (wheresuppNj = {x ∈ [0, 1] :
Nj(x) 6= 0}). Then we consider the fuzzy input fuzzy
output B-spline seriesS : K → RF defined levelwise

[S(f, u)]α =
n∑

j=−r+1

Nj([u]α) · [f(ξj)]α, α ∈ [0, 1].

(8)
Let alsoδ = max0≤j≤n(tj+1 − tj).

We observe that everything is also valid forK
compact subset of the fuzzy reals lying in an interval
[a, b].

First let us prove that the function in (8) is cor-
rectly defined.

Theorem 11 The (crisp) intervals[S(f, u)]r, r ∈
[0, 1] given by eq. (8) define a fuzzy number for any
u ∈ K, i.e., S(f, u) is a function having inputs and
outputs fuzzy numbers.

Proof. Indeed, sinceNj are continuous and since
f(ξj) ∈ RF , then obviouslyNj([u]α) and [f(ξj)]α
are closed, bounded intervals. This implies that
[S(f, u)]α is a closed bounded interval, i.e. condition
(i) of Theorem 10 is satisfied.

Sincef(ξj) are supposed to be fuzzy numbers,
they satisfy condition (ii) of Theorem 10. Also, since
[u]α1 ⊂ [u]α2 for α1 ≥ α2 and sinceNj are con-
tinuous we getNj([u]α1) ⊂ Nj([u]α2) and we get
Nj([u]α1) · [f(ξj)]α1 ⊂ Nj([u]α2) · [f(ξj)]α2 for any
j ∈ {−r + 1, ..., n}. By the properties of the usual
interval arithmetic it follows that condition (ii) in The-
orem 10 is fulfilled.

SinceNj andf are continuous and sinceNj is
positive we obtain the endpoints of ther-level set
Nj([u]α) · [f(ξj)]α areNj(uα) · f(ξj)

α andNj(uα) ·
f(ξj)

α
, respectively. Now, for any(αn)n∈N ⊂

[0, 1] converging increasingly toα ∈ [0, 1] we have
Nj(uαn) · f(ξj)

αn → Nj(uα) · f(ξj)
α andNj(uαn) ·

f(ξj)
αn → Nj(uα) · f(ξj)

α
and codition (iii) of The-

orem 10 is satisfied.
Finally, by Theorem 10 we get the required con-

clusion.
Continuity of the functionS(f, u) is proved in the

next theorem.

Theorem 12 The functionS : K → RF is continu-
ous onRF equipped with the Hausdorff distance.

Proof. Let u, v ∈K. By direct computation we have

D(S(f, u), S(f, v)) =

= sup
α∈[0,1]

max
{∣∣∣S(u)α − S(v)α

∣∣∣ ,
∣∣∣S(u)

α − S(v)
α
∣∣∣
}

By the properties and the definition of the Hasdorff
distanceD we have:

D(S(f, u), S(f, v))

≤
n∑

j=−r+1

sup
α∈[0,1]

max{|Nj(uα)−Nj(vα)| · |f(ξj)
α|,

, |Nj(uα)−Nj(vα)| · |f(ξj)
α|}.

It is easy to check that the above relation leads to the
continuity ofS(f, u).

5 Conclusions and Further Research

Fuzzy B-spline series are generalizations of the spline
for approximation of functions having crisp inputs and
fuzzy output. In this paper we have studied these func-
tions. We have obtained variation and uncertainty
diminishing property of fuzzy B-spline series. Their

approximation properties together with considerations
regarding possible applications to fuzzy control mo-
tivate the generalization of the splines to case when
both the inputs and the outputs are fuzzy. For this case
we have introduced by using Zadeh’s extension prin-
ciple fuzzy input fuzzy output splines and we proved
that the definition is correct and that it gives a func-
tions with inputs and outputs in the space of fuzzy
numbers.

For further research we propose the study of ap-
proximation properties of these functions, together
with the study of a fuzzy control algorithm based on
the above defined splines.
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