
More Privacy in Context-aware Platforms: User Controlled Access Right
Delegation using Kerberos

PETER LANGENDOERFER and KRZYSZTOF PIOTROWSKI

IHP
Im Technologiepark 25, D-15236 Frankfurt (Oder)

GERMANY
 http://www.ihp-microelectronics.com/~langend

Abstract: - In this paper we propose a distributed Kerberos architecture in which each mobile client runs her own
Kerberos ticket granting server. Each of these individual TGS may provide tickets only for data that is owned by the
mobile (user) on behalf of which it is executed. In addition the initial authentication phase can be done by the standard
Kerberos approach as well as based on PKI using certificate chains. So our architecture gives the user back control over
her personal data and it provides better scalability to the context aware platform. It also opens up the Kerberos
approach for environments in which the mobile client discovers new services, which are not registered at its platform,
i.e. at the Kerberos server. Our measurements indicate that running a ticket granting server on the mobile device does
not inhibit a real burden. Compiling a ticket is done in about 100ms at 238 MHz and the client application size of our
Java implementation is less than 50kByte.

Key-Words: - Privacy, Context awareness, Location based services, Kerberos, Middleware, JAAS, Mobile Devices

1 Introduction
Privacy has been identified already several years ago as
one of the major concerns of Internet users [2, 7]. The
risk for privacy will increase when contest-aware or
ambient intelligence systems are in place [6, 8]. The lack
of privacy may become the major pitfall of these
context-sensitive systems. In order to tackle this problem
a lot of work has been done. Almost each location-aware
platform provides some privacy protecting functionality
[4, 9, 13, 14]. But most of these solutions are focusing
on protecting the current position, which makes those
approaches inflexible, i.e. they cannot be applied for
other context. In addition, the granularity of the
protection means is quite coarse, i.e. people can be
visible or invisible, which also restricts the applicability.

In this paper we present an architecture, which
enables each user of a certain platform to delegate fine
grained access rights to her data. The authentication and
authorization mechanisms are derived from Kerberos
[12], which is well analysed and known to be secure.
The core concept of our approach is that each client
device runs its own Kerberos ticket granting server. So
each client can delegate access rights for her own data to
any other client or service the client trusts. This trust
may be set up by relying on the Kerberos infrastructure
or by verifying PKI certificates. The major benefits of
this approach are:

1. The user is back in control, since only the user can

provide tickets for her data.

2. The distribution of the ticket granting server
provides the system with better scalability and
robustness.

3. Newly discovered services can get access to user
data w/o first establishing a trust relationship
between those services and the platform.

The latter may be of high importance especially in Web
service based architectures.

A skeleton implementation of the architecture is
already finished and the measurements done clearly
indicate that running a ticket granting server on a state of
the art mobile device is feasible. Compiling a ticket took
about 100 ms at 238 MHz.

The rest of this paper is structured as follows. Section
2 provides a short state of the art, including Kerberos
and other work that intends to use Kerberos in wireless
networks. Then we discuss our architecture. The
protocols applied are investigated in section 4. The
measurement results are presented in section 5. The
paper concludes with a short summary and an outlook on
further research steps.

2 Related work
Kerberos was developed at MIT in the 80s to provide
authentication and authorisation in campus computing
network. Since then it has been revised and improved.
The current version, Kerberos 5, is used by many
applications and operating systems.

Deleted:

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp542-547)

S1 C1 TGS

AP-REQ

AP-REP

TGS-REP

TGS-REQ

TGT request to KDC‘s
Authentication Service.
Secret key authentication.

Application / Access
request to S1‘s process.
Secret key authentication.

AS

AS-REQ

AS-REP

Ticket request to KDC‘s
Ticket Granting Service.
Secret key authentication.

KDC

Fig. 1: Standard Kerberos protocol

client KDC server

AS-REQ

AS-REP

TGS-REP

TGS-REQ

AP-REP

AP-REQ

TGT request to KDC‘s
Authentication Service.
Public key authentication.

Ticket request to KDC‘s
Ticket Granting Service.
Secret key authentication.

Application request to
server‘s process.
Secret key authentication.

Fig. 2: The PKINIT approach to use PKC in Kerberos

The term Kerberos refers to the protocol and the

software implementation, but in this paper we use it to
refer to the protocol only (see Fig.1).

For all the years of its employment Kerberos has
been proved to be secure and reliable. The only weak
point in our opinion is the need for a secure storage of
secret keys that are a priori selected or agreed. This
initial problem of key agreement or transfer and the need
for one secret for each participant registered by the Key
Distribution Center (KDC) cause the protocol to be less
scalable and flexible. To solve these problems several
approaches have been proposed. To reduce the burden of
secret key storage public key cryptography has been
applied to the initial authentication in the PKINIT
approach (see Fig.2). However, this solution requires an
employment of external Public Key Infrastructure (PKI).
Furthermore, the public key operations are said to be
more computationally expensive. This causes the need
for investigating the balance between calculation cost
and secret key management burden in real applications.

Here we focus on single Realm scenario, but in multi
Realm application there is additional need to define the
authentication mechanisms used between KDCs. But this
issue is out of scope of this paper.

We also focus on mobile device applications. There
are several approaches that try to optimise the Kerberos
for the use on mobile devices. They focus either on the
limited resources of the device (Charon) or on the ability
to build ad-hoc networks (Kaman).

Charon [3] reduces the computations on the mobile
device by applying a proxy between client and KDC.
This optimises the operation speed, but causes several
disadvantages like simply the existence of another
trusted party and possible latency delays in the
authentication mechanisms. Similar issues are in M-
PKINIT [5], which combines Charon and PKINIT.
On the other hand, the idea of Kaman [12] is to use
Kerberos authentication and authorisation protocol in ad-
hoc networks. In such networks there is a problem with
node persistence, thus the KDC is distributed between
mobile nodes that act as authentication servers.
Additionally, Kaman uses a modified Kerberos protocol
known as four-pass Kerberos [1] so there is no need for
the TGS (see Fig.3), i.e., the tickets are prepared by the
Authentication Service (AS). But this approach still
requires a priori registration at the distributed KDC and
storage of information about each user at each mobile
device that acts as AS.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp542-547)

C1 C2 S1

TICKET REQ

TICKET REP

ACCESS REQ

ACCESS REP

Ticket request to S1‘s
Authentication Service.
Secret key authentication.

Access request to C1.
Secret key authentication.

Fig. 3: The protocol of the Kaman approach

3 Architecture
In this section we discuss our distributed authorization
delegation architecture. We first give a short overview of
how the systems works before we describe in detail the
architecture on the infrastructure and client side.

3.1 Overview - The basic idea
From our point of view the major challenge when
protecting user privacy is that the user looses control
over her data as soon as it is exposed to a certain service
or other users. We want to tackle this issue by ensuring
that only the user has the right and the capabilities to
grant access to her data. There are two basic concepts to
provide access rights: namely access right lists and
capabilities. In a very dynamic and highly distributed
environment, where the user is not the owner of the
infrastructure in which her data is stored, managing
access right list by the user is not feasible. So, the choice
is that the user authorizes services etc. by providing
capabilities. Kerberos is a system which implements the
delegation of access rights by providing capabilities, i.e.
tickets in the Kerberos terminology. Kerberos is known
to be secure, so relying on this approach helps to reduce
security flaws in the design to a minimum. But, there
are two issues in the Kerberos approach that have to be
adapted:

1. Kerberos uses a centralized service, i.e. its Ticket

Granting Server (TGS) to distribute tickets among
its clients.

2. Kerberos uses a centralized approach for initial
authentication and trust set-up.

In the application environment we have in mind,

there may be some services that are developed on top of
the context-aware platform and are therefore registered
at the Kerberos KDC of the platform. But since we talk
about mobile devices, it seems to be reasonable to
assume that a user will discover service that needs access
to the users data but is not already registered at the
Kerberos KDC. In order to allow the client to use such a

service the authentication and trust set up has to be
decentralized.

The centralized TGS contradicts the idea that the
user is the only part of the system, which may grant
access to his/her data. So, each mobile device has to run
its own TGS. In addition no TGS may be run on the
infrastructure side.

3.2 Infrastructure Architecture
In the infrastructure we distinguish three functional parts
(see Fig. 4):

1. The intrinsic platform functionality such as position

and profile handling, which is needed to provide
useful services but irrelevant for our further
discussion.

2. The Kerberos KDC, which is used for mutual
authentication between the platform and its
subscribers (mobile clients and services).

3. The privacy enforcement part, which ensures that
data can be accessed only if a valid ticket is
provided.

Authorisation Verification Component

Communication Interface

Position Profiles
(Device/User)

...

Position
Handling

Profile
Handling

Policy

Context-aware Service Platform

...

Trust Anker

Key DB
Ticket

DB

Kerberos KDC

Privacy
enforcement

Authorisation Verification Component

Communication Interface

Position Profiles
(Device/User)

...

Position
Handling

Profile
Handling

Policy

Context-aware Service Platform

...

Trust Anker

Key DB
Ticket

DB

Kerberos KDC

Privacy
enforcement

Fig. 4: Architecture of the infrastructure side

The Kerberos KDC provides the usual functionality, but
only in those cases when both parties i.e. the client and
the service are registered with the context-aware
platform. So, it is the initial point to set-up a certain level
of trust between these parties. Due to the fact that there

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp542-547)

exists also a chance to set-up trust via certificates using
public key infrastructure the role of Kerberos is less
crucial and the system avoids a single point of failure,
which improves its robustness.

The essential part is the privacy enforcement part. It
is responsible to check each incoming ticket. In addition
to all checks that are done in a standard Kerberos system
such as checking whether or not it is still valid etc. the
privacy enforcement part has to check whether the
issuing TGS may grant access to the data requested. This
is needed to ensure that malicious clients do not issue
tickets for other clients’ data. The needed information is
stored in the policy files.

3.3 Client Architecture
Two services are executed on the client in order to set-up
trust between the client and a service and to delegate the
access rights (see Fig. 5). The authentication service
provides means to verify a TGT presented by the service
in case both parties are subscribers of the same platform.
It is also capable to verify a certificate chain delivered by
the service in case the service is not registered at the
same platform or if the Kerberos part is down for some
reason. The data needed to verify the trustworthiness of
a certain service is stored in the key store and trusted
certificate authorities file for standard and PKI cases,
respectively.

The authorization service compiles a new ticket for a
certain service if the authentication phase was
successful. In addition it checks the privacy preferences
stored in the according policy file to determine details of
the ticket under preparation such as the kind of the
access right (read/write), validity time etc. This ticket is
then send to the service, which presents it to the
authorization verification component of the platform in
order to get access to the requested data.

AuthenticationService

Policy

Certificate
Verification

Trusted
Certificate
Authorities

Key Store

AuthorisationService

Compile Ticket

Trust Anker Privacy Preferences

Client

TGT
Verification

AuthenticationService

Policy

Certificate
Verification

Trusted
Certificate
Authorities

Key Store

AuthorisationService

Compile Ticket

Trust Anker Privacy Preferences

Client

TGT
Verification

Fig. 5: Architecture of the client side

4 The protocol

To explain the protocol flow of our approach we will
provide a simple scenario. Suppose that there is a mobile
client C1 that is registered in the architecture that senses
current location of this client. This already implies a
relationship between C1 and infrastructure. The sensed
data is then stored by the infrastructure and should be
available only to parties that are authorised by C1 to
access this data. To simplify the further description we
refer to the infrastructure components that manage the
location information and access rights as the info server.
Imagine that the client C1 performs a service discovery
operation and finds out that there is a guiding service C2
that can show her the way to a place she wants to go to.
However, this guiding service requires the knowledge
about the current location of C1. Thus, C1 sends a
service request to C2 with the information that her
location data is available at the info server and that C2
needs to authenticate himself to C1 in order to be
authorized by C1 to access this data. The authentication
process can be performed in two ways. C2 can prove his
identity directly to C1 using the certificate chain (see
Fig.6) or to the Authentication Service (AS) in the
infrastructure and then request authorisation from C1 to
access her data at the info server with the Ticket
Granting Ticket (TGT) from AS (see Fig.7). The main
difference between these two protocols is that the direct
authentication and authorisation does not require C2 to
be registered at the infrastructure. After the
authentication process, C1, depending on her local
policy, can provide C2 with a ticket that grants the
access to C1’s data at the info server. This ticket is
additionally signed by C1 to assure the info server about
the source it comes from.

Due to space limitations we do not show the structure
of the packets. But all messages used are equivalent to
the original Kerberos packets, i.e. they have the same
structure and content. This ensures that our approach is
as secure as the original Kerberos approach is, and its
backwards compatability with original approach. The
major difference is that we use a public key based
mechanism, i.e. DSA to sign the messages. His is
necessary to allow the authorization component to verify
that the ticket was really issued by the client whose data
is required, in cases in which the KDC of the info server
is completely omitted.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp542-547)

C1 C2 info server

SERVICE REQ

TICKET REQ

TICKET REP

INFO REP

INFO REQ

Service request.

Ticket request to C1‘s
Authentication Service.
Public key authentication.

Information request to info
server‘s process.
Secret key authentication.

Fig. 6: The protocol with direct authentication (service C2 to client C1)

C1 C2 info server

SERVICE REQ

TICKET REQ

TICKET REP

INFO REP

INFO REQ

Service request.

TGT request to
Authentication Service.
Public key authentication.

Information request to info
server‘s process.
Secret key authentication.

AS

AS-REQ

AS-REP

Ticket request to C1‘s
Ticket Granting Service.
Secret key authentication.

Fig. 7: The protocol with indirect authentication (service C2 to infrastructure AS)

5 Measurements
We implemented our prototype of distributed Kerberos
application using SUN Java SDK, version 1.4.2. To
process the tickets we used the Java Authentication and
Authorisation Service (JAAS). As the context aware
platform we used our in-house approach PLASMA [10].
For the part of Kerberos that was not modified we used
the MIT Kerberos 5 Release 1.2.7 that is distributed with
RedHat Linux 9.

To check the applicability of our approach, we
measured the time needed by a mobile device to compile
a ticket. We simulated a mobile device by a Pentium-M
laptop with CPU clock rate reduced to 238 MHz for a
first measurement setup and to 595 MHz for the second.
These two setups are approximately of the performance
of a typical PDA (250-600MHz). For each CPU speed
we performed 10 passes. For each pass the client was
creating the ticket including signing it with the DSA
signature. We also additionally measured how much
time the client needs to pack the ticket into a byte stream
that can be send over the network. The results of our
measurements are provided in Table 1.

Ticket compilation
[ms]

Ticket packing
[ms]

238 MHz 595 MHz 238 MHz 595 MHz
1 90 80 3,01 1,1
2 70 50 2,8 1,1
3 80 90 3,21 1,2
4 70 81 2,9 1,1
5 140 60 2,7 1,17
6 120 80 2,7 1,1
7 120 100 2,81 1,2
8 70 70 2,8 1,11
9 180 61 2,7 1,1
10 70 90 3,01 1,15
average 101 76,2 2,864 1,133

Table 1: Time measurements

The size of implemented Java Class files is less than
50kBytes.

As shown in Table 1, the time needed to compile a
ticket and pack it to a byte stream is approximately 100
ms. Thus, our measurements show that it feasible to run

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp542-547)

the Kerberos Ticket Granting Service on a mobile device
without exhausting its resources.

6 Conclusions

In this paper we proposed a distributed Kerberos
architecture in which each mobile client runs own
Kerberos ticket granting server. Each of these individual
TGS may provide tickets only for data that is owned by
the mobile (user) on behalf of which it is executed. In
addition the initial authentication phase can be done by
the standard Kerberos approach as well as based on PKI
using certificate chains. The major benefits of our
approach are:

1. The user is back in control, since only the user can

provide tickets for her/his data.
2. The distribution of the ticket granting server provides

the system with better scalability and robustness.
3. Newly discovered services can get access to user

data w/o first establishing a trust relationship
between those services and the platform.

Our measurements indicate that running a ticket granting
server on the mobile device does not inhibit a real
burden. Compiling a ticket is done in about 100ms at
238 MHz and the client application size is less than
50kByte.

In our next research steps we will focus on
measurements of the whole protocol, and set up
experiments to verify the benefit of our approach with
respect to scalability. We also intend to migrate the
implementation on a PDA as soon as modular Kerberos
support is provided. Then we are going to use our own
AES and Elliptic Curve Cryptography (ECC)
implementations to replace DES and RSA (or DSA)
respectively. We expect a significant gain with respect to
processing time, if these cipher mechanisms are applied.

Acknowledgement
This work was partially funded by the German
government under grant 01AK044C and grant
01AK047F.

References:
[1] D. W. Carman, P. S. Kruus, B. J. Matt, Constraints

and approaches for distributed sensor network
security, Technical Report 00-010, NAI Labs.

[2] L.F. Cranor, Beyond Concern: Under-standing Net
Users' Attitudes About Online Privacy, In: Ingo
Vogelsang and Benjamin M. Compaine, eds. The
Internet Upheaval: Raising Questions, Seeking

Answers in Communications Policy, Cambridge,
Massachusetts: The MIT Press, p. 47-70, 2000.

[3] A. Fox, S. D. Gribble, Security on the move: Indirect
Authentication using Kerberos, Proc. of the Second
Annual International Conference on Mobile
Computing and Networking, 155-164.

[4] M. Gruteser, D. Grunwald: Anonymous Usage of
Location-Based Services Through Spatial and
Temporal Cloaking, ACM/USENIX International
Conference on Mobile Systems, Applications, and
Services (MobiSys), 2003

[5] A. Harbitter, D. A. Menasce, The performance of
public key enabled Kerberos authentication in mobile
computing applications, Proc. of the 8th ACM
conference on Computer and Communications
Security, 78-85.

[6] IST Advisory Group (ISTAG) chap. 4 Ambient
Intelligence: from Vision to Reality, In G. Riva, F.
Vatalaro, F. Davide, M. Alcañiz (Eds.) IOS Press,
2005, http://www.ambientintelligence.org

[7] Juniper Research, Consumers worried about online
privacy, 2002, available at:
http://www.nua.com/surveys/index.cgi?f=VS&art_id=
905358019&rel=true; last visited May 2005

[8] P. Langendoerfer: m-commerce why it does not fly
(yet?), Proceedings of the International Conference
on Advances in Infrastructure for e-business, e-
Education, e-Science and e-Medicine on the Internet,
2002.

[9] P. Langendörfer, R. Kraemer: Towards User Defined
Privacy in location-aware Platforms, Proceeding of
the 3rd international Conference on Internet
computing, USA. CSREA Press, 2002.

[10] P. Langendoerfer, O. Maye, Z. Dyka, R. Sorge,
R.Winkler, R. Kraemer. Middleware for location-
based services: Design and implementation issues. In
Q. Mahmoud (Ed.): Middleware for Communication.
Wiley, 2004.

[11] A. Pirzada, C. McDonald, Kerberos assisted
authentication in mobile ad-hoc networks,
Proceedings of the 27th Australasian Computer
Science Conference (ACSC) 26(1), 41-46.

[12] J. Steiner, C. Neuman, J. Schiller, Kerberos: an
authentication service for open network systems,
Proceedings Usenix Winter Conference, Berkeley
1988.

[13] K. Synnes, J. Nord, P. Parnes: Location Privacy in
the Alipes platform. Proceedings of the Hawai'i
International Conference on System Sciences
(HICSS-36), Big Island, Hawai´i, USA, January
2003.

[14] W. Wagealla, S. Terzis, C. English: Trust-based
Model for Privacy Control in Context-aware
Systems, 2nd Workshop on Security in Ubiquitous
Computing, Ubicomp, 2003

Field Code Changed

Field Code Changed

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp542-547)

