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On local canonical form of boundary tangency manifolds for
2-dimensional gradient-like Morse-Smale controlled systems
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Abstract: - Boundary tangency manifolds (BTMs) of a nonlinear state equation are for constructing the
level surface of an unknown control Lyapunov function generalized to gradient-like Morse-Smale controlled
systems. We differentiate a Morse-Smale function repeatedly along the ‘state equation’by regarding the
input as an independent variable. The BTMs are the nested sequence of submanifolds obtained from these
Lie-derivatives. In this paper, we show that there is a certain kind of local canonical form of BTMs on the
neighborhood of a noteworthy point. If the BTMs are in local canonical form then the trajectories of the
closed-loop system under a constant input has only the points of external tangency on its boundary of the
defining set of the BTMs.

Key-Words: - global asymptotic stabilization, gradient-like Morse-Smale controlled system, Conley index

1 Introduction subsets of common zeros of these Lie-derivatives.
A gradient-like Morse-Smale controlled (GLMSC)  In this paper, we show the existence of local
system [6] is a closed-loop system that provides acanonical form of the BTMs for a given nonlinear
gradient-like Morse-Smale (GLMS) flow. We are state equation that satisfies a suitable assumption.
developing the theory of the GLMSC systems [2, 3,If the BTMSs are in local canonical form then tra-
4,5,7,8,9, 10, 11, 12]. It is aimed to solve the jectories of the closed-loop system under a constant
global asymptotic stabilization problem for generalinput have only the points of external tangency on
nonlinear state equations (may not necessarily bés boundary of the defining set of the BTMs. Local
feedback linearizable). canonical form of BTMs is closely associated with
For the global asymptotic stabilization problem the topology of the given state equation. If we spec-
of a given nonlinear system, the key idea of permit-ify a topological structure to the GLMSC system,
ting singular points to be contained in the controlledthen we get significant information for constructing
system has been already presented in the beginningn arbitrary level surface of the generalized con-
of 1970’s [14, 18]. However, in order to carry out trol Lyapunov function from local canonical form
the idea it has been necessary to wait for the develef BTMs.

opment in the theory of Conley index [1, 17, 20].  The level surface of our generalized control Lya-
The Conley index theory, which is a topological the- punov function has a self-intersection at each saddle
ory of dynamical systems, offers us various toolSpoint of GLMSC systems. To analyze the level sur-
for analyzing the global topological structures of face with self-intersections, we need the discussion
dynamical SyStemS. AImOSt a.” these I‘esu|tS WerqOr expressing the Compact attractor Of GLMSC
ShOWI’l in the early 1990's. Our GLMSC SyStem Cansystem as a CW_CompleX [13] Thus’ th|s Subject
be easily handled as a system that can realize thgy not mentioned here. Further, in this paper, we
above-mentioned idea, and is based on the Conleyestrict our discussion to nonlinear state equations
index theory. with two-state variables and one-input.

Boundary tangency manifolds (BTMs) of a non-  1his paper is an expansion of our paper [7]. In

linear state equation are for constructing the Ievel[7] we discussed the same notion for linear state
surface of a control Lyapunov function generalizedeqhaﬁons_

to GLMSC systems in the viewpoint of differential
topology [19].

We differentiate a Morse-Smale function repeat- . .
edly along that section of the vector bundle on the2 Basic definitionsand results
configuration space (see Section 2 for detail) whichlin this section, we outline the basic definitions and
is defined by a given state equation. Briefly speak-esults for GLMSC systems from our previous pa-
ing, the boundary tangency manifolds of a statePers[2, 3, 4, 5, 8, 9].
equation are obtained from the nested sequence of Let us consider a clagd®-nonlinear state equa-
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tion with x = (x},x?) € X andu € U: We also call it a controlled system.
_ We denote especially the zeros of the state equa-
x=f(x.u), (1)  tion f e T'(E) by ker(f):

where the state spaégis a manifold that is home- =10 _

omorphic toR? or S x R (R is the real line an@* ker(f):=1(0) ={a€ ] f(q) =0} (9)

is the unit circle), and the input spateis R. A constant solution (a singular point) of a con-

Let o trolled system is the intersection of the input mani-
Q=X xU—X, 2 fold Muy(k) and ke(f). LetJ(f)(q) be the Jacobian

be a trivial fibered manifold over the state space Matrix of f atq e Qo, and we denote its rank by
with the total manifoldX x U, the base manifol&k,  ranky(f). Fora=0,1,2, we define
the typical fibefU and the projectiont, as a surjec-
tive submersion. We call it the configuration space  K3(f) :={q€ Qo | dimR?—rank,(f) = a}.
of state feedback control systems. We often repre-
sent the fibered manifold (2) by the total manifold  K2(f) is the set of regular points df. The inter-
Qp. Each pointy := (x,u) € Qq is called a configu-  section ofk3(f) and kef f):
ration of the control system.
Let £ be a fibered manifold or a vector bundle. Ny(f) :=ker(f)n Kg(f) (10)
I'(€) denotes the set of all sections &f The map
in the right hand side of a state feedback k(x) is an one-dimensional submanifold@§. We call it

defines a sectiok € I'(Qp). The imageMy(k) :=  the null manifold of the state equation (1). In gen-
k(X) is a 2-dimensional submanifold 8. We call  eral, ket f) \ Nx(f) # @. We can classify the com-
it an input manifold: plement in some categories [8, 9] by usiKg(f)

and K3(f), which are the sets of critical points.
Nevertheless, the null manifold plays an essential
role in our application [3, 4, 6].

Let q € My(k) be a singular point of a controlled
systemo € X(My(Kk)). If the derivative ofDo(q)
does not have @ C as an eigenvalue, then we say

) -1 _. thatq is simple. I1fDo(q) have no eigenvalue on
T (1) (TX) =B = Qo. () the imaginary axis, then we say thigis hyperbolic.
The mapf of the state equation (1) defines a sectionThe following theorem is a basic result for us:
of E. We will also refer tof € I'(E) as the state

Mu(k):={ge Q|u—k(x)=0}. (3

Let TX be the tangent bundle ovét. Pulling
back TX over Qg by rm,, we construct a 2-
dimensional vector bundle, denoted by

equation. Theorem 1 ([3, 5]) Acongtant solutiongq= (x,u) €
The restriction off € I'(E) to an input manifold ~ Mu(K)Nker(f) C Qo of acontrolled systemisasin-
My(k) C Qo, plesingular point if and onlyif gisatransversal in-
o= f|My(K), (5) tersection between Ny(f) and My (k) in Qo. If gisa

, , hyperbolic point then it isa transversal intersection
is called a controlled system. Thecan be iden- patween Nx(f) and My(k) in Q. 1

tified with the vector field oMy (k). It is locally
given by Let EO be the zero section of the vector bundle
a(a) = (9 g xk)- (6) E. Then, ke(f) = Ny(f) if and only if f(Qo) rh
. E%in E. Sincef € I'(E) is a continuous map, we
On the other hand, a vector fildde X(X) onX  have c[N,(f)) C ker(f). The state equation (1)
that makes commutative the following diagram:  will said to be simple if ketf) = Ny(f), and al-

most simple if keff) = cl(Ny(f)). Henceforth, we

(X,U;v) (xv)

E T TX suppose that the state equation is almost simple.
In general, Nyx(f) has connected components
f f NL N2 .... The union of some connected compo-
) X717V
) nents
Qp —— X Nya = N UNR U Nk (11)
(%,u) )

will said to be an unit component dr-component
is the coordinate expression of the controlled sys-of Nx(f) with the indexA := (kg ko, -+ ki), if it
temo € X(My(k)) onX, and it is locally given by  has the following properties:
R (ul) cl(Ny.,) is the closure of &2 immersion of a
f(xX) = f(x,Kk(x)). (8) connected 1-dimensional manifdid, .
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(u2) cl(Ny.,) is maximal as a subset of Kdn sat-
isfying the condition (ul).
LetN,., be an unit component &fy(f), and

O, u) = (01(B),¢*(B),9*(B)), B X, (12)

be a parametric representation gfé}., ). Suppose
that My (k) and Ny(f) intersect transversally at a
pointqg € My(k) "Ny.x C Qo in Qo and the poingis
on an connected componémll‘:/\ of Ny.». Then, we
define the local intersection numberJuf, (k) with
Nx:)\ at q_by

(MU(k) O Nx:A )6:: Sigr(DEt(G(q)))7 (13)
where
1 0 d1k(q(a))
G(q) := { 0 1 92k(Q(0'))}
ds'(q) dg@?(@) dg@®(q)

Consider the matrix:

afl(q) dfY(q) a.fi(q)
F(@):= | auf?(@) 2f%(@) duf?(@)|,
—0ik(q) —adk(g) 1

obtained fromf(g) = 0 andu—k(x) = 0. There
exists an uniquegu € {1,—1} for each connected
componeniN¥ | such that

sign(Det(F(q))) = Hk sign(Det(G(q)))

at any transversal intersectigre M (k) NN, .
The Morse index of a hyperbolic point is the di-

(14)

mension of the unstable manifold. A hyperbolic

point is denoted by if the Morse index is an even
number, and is denoted Ry if that is an odd num-

by i in (14).

3 Boundary tangency manifolds

In this section, we summarize the basic defini-
tions and results for boundary tangency manifolds
from our previous papers [10, 11].

Let £ € X(X) be a vector field on a manifolH.

A flow on ¢ : R x X — X is the set of all solution
trajectories of &. We say thai is a constant so-
lution of the flow if ¢ (R,X) = x at a pointx € X.

If there exists a function that strictly decrease along
the solutions except on the constant solutions, i.e.
Lyapunov function in a generalized sense, then the
flow is called gradient-like.

Let ¢ be a gradient-like flow oiX. We say that
the flow ¢ is gradient-like Morse-Smale (GLMS)

e if the constant solutions af are a finite num-

ber of hyperbolic points only, and

e if the unstable manifoldV'(y) and the stable

manifoldW>3(z) intersect transversally i for
any hyperbolic pointy,z € X [22].

LetV be a function onX. If the negative gra-
dient flow ofX = —gradV) is GLMS, then thé/ is
called a Morse-Smale function éh In general, the
Lyapunov function of GLMS flow is obtained from
a Morse-Smale function, and that itself is a Morse-
Smale function.

LetM C X be a level set of a Morse-Smale func-
tion on the state spack. Suppose thatl is a con-
nected submanifold with a boundaiyM of class
C3. Let us denote restrictions of the fibered mani-
fold Qg to M anddM by

mM M:=MxU — M, (16)
oM :0M := M x U — dM a7
respectively. We will represent these fibered mani-

ber. Then, we have the following theorem on the reolds by their total manifold®1 anddM.

lation between a local intersection numbehéf (k)
with N,., and the parity of the Morse index:

Theorem 2 ([5, 9]) Let g€ NX, N, be a hyper-
bolic point and (MyoNy» )g € {1, —1} bethelocal
intersection number. Then there exists an unique
isomor phism

O(Ngy) {1 -1} —{zF. 27} (15)
for each connected component N)'z 20 and the iso-

mck)rphism does not depend on the position of g on
Nx:)\ :

To probe the theorem, we define

6(Nxea ) (Mu(k) 0 Niea )g)
_ {Z+ if - (My(k)o x:)\)q_: 1
it pie (My(K)oNgp )g= —1,

The Poincae-Hopf index formula for vector
fields on a manifold with boundary [16] has been
extended by C. C. Pugh [19] to the case that the
vector field does not have uniform direction at each
point on the boundary. Moreover, this result has
been extended by C. McCord [15] to flows that in-
clude isolated invariant sets. The notion of bound-
ary tangency manifolds of control systems is a gen-
eralization of the results of C. C. Pugh and C. Mc-
Cord for control systems.

Let TQg be the tangent bundle and: I (E) be a
section. Then we define a map: Qo — TQg by

Vi (X, u) = (X, u;V(X),0) € TQop. (18)
Now we define subsets ofM:
By ={q€ Byl f.(q) € To(Bm)},
By :={qe Byl f.(q) € To(Bi)},
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where BY, := dM, and we call them the first and Further, if B2, is the second BTM then we have
second boundary tangency sets on the defining set
M respectively. By = RZUB{HURE, (22)
We denote the intersection dfy(f) anddM by o _ _
whereLl means disjoint union. LeM := My(K)
Ny £]OM) := Ny(f) N IML (19) beaninput manifold such that= k(x) = constant.
It is easy to show that the intersection pointidf;
Sincef, (§) = 0 at each point € Ny(f|dM), we get andBy, belongs toBg; if and only if the point is a
ge BM andq e BM Forj = 1,2, we define thgth  tangency point of them.

open boundary tangency set by Let us suppose thaﬁf,| is the BTM, and consider
. _ the geometrical meaning 6% andﬂ%i. Fix orien-
By := By \ Nx(f[OM). (20)  tations ofQp andMy(k). A point §e My(k) N B,
be the transversal intersection @y, and M be
If they satisfy the transversality condition: an input manifold with a constant input such that
. 1] q e M. Then,yve can define 'Ehe local intersection
f. rh% TB}, in TBY, |B,, numberg M, o B )gand(MEo B, )g at the pointg

| if MS g By in Qo. Thus, we define another local
then we call@ the jth boundary tangency mani- intersection numbe@vtUl e Bl)g by the following

fold (BTM), and{B B%,} the boundary tangency way: (My ® 3M)q =1if (MUOBM) agrees with
manifolds (BTMs). If we need to specify the state (¢ o Bl v and(My e Bl wg=—1if (MUOBM)

equation, we write such & (f) for BY. disagrees witMS o Bl,)q. Then, we have the fol-
Let us defineR® := M and R = {q € 0R°|  lowing result:

f.(q) points outward fronR® }, wheredR® = BY,,

and we callR! the first exit region. Further, Theorem 3([5, 11]) Supposethat My Mg BM in Qo

RY = {qe€ 9R?| f.(q) points inward towardk®}  at ge Myn3BY. If ge R2 and (My o Blg=1

is called the first entrance region. We will write then the controlled trajectory has q = (X, k(X)) €

such ask! (f;M) for R! if we need. My as a point of internal tangency, and if (M, e
A subsetu(dM) C Qp is called a dissipative BM)q = —1 then that has q as a point of external

boundary of the control system if there exist a defin-tangency. On the other hand, if g€ R2 and (My e

ing setM C X of BTMs and a sectiom € I'(dM) {1 L)q = 1 then the controlled trajectory has g as a

such that L point of external tangency, and if (My @ Bl )g= —1
H(OM) C R (f). (21)  then that has qas a point of internal tangency.

For an input manifoldv(, (k) including a dissipative

boundary, the subset(dM) C M(K) is a level sur-

face of a Lyapunov function defined locally onthe 4 | ocal canonical form

neighbourhood ofi(dM). This result does notde- |, this section, we define local canonical form

pend on the gradient and the curvaturé\d§(k) at ot T\, and state the result of the existence of

eachq_e U(OM). o canonical form.
Using the above definitions, the problem to con- | \ve use an input transformation:

struct a level surface of a generalized control Lya-
punov function is equalent to the problem how to u= w(x,0) (23)
find a defining seM of BTMs that allow a dissipa-

tive boundary of the control system. We will follow for a given state equation (1), then we denote the
C. C. Pugh for considering the problem, and let usnew state equation by

define the second exit and entrance sets. TN .

The second exit sét? is a set ofy e (R ) such x= 1(x,0) == f(x w(x ). (24)
that f,(q) points outward fron®R™. in the way simi-  \we denote the inverse map of (23) by="w; *(u)
lar to theR! , and the second entrance ®8tisaset  for a fixedx € X.
of g € d(R!) such thatf, (q) points inward toward LetM C X be a defining set of BTMs, and
RY, whereR = cl(R). _ _

If B, is the first BTM then we have Nl F;0M) = Ns(1) N OM

_ _ be the intersection olNy(f) and M. In gen-
Rt =Rt = BY,. eral, Ny(f;dM) has several connected components.
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If dM andNy(f) intersect transversally then each B} (f)
connected component is a discrete point (it is al—p (o) mpgl(O). Let ¢

ways true for dinlU = 1). We choose suchM and
denote one of them by = (Xo,Up) € Nx(f;IM).

Definition 1 For a given state equation (1), if there
exist an input transformation (23) and a defining set
M C X of a BTM B}, such that the B}, satisfies

A~

B () NWg, € RZ (f, M) (25)

on an open ne|ghborhood Wy C oM of §p :=
(%0, lio) = (X0, Wi (uO)) € Nx(f JM), then we say

that the BTMs { B, (f), B (f)} isin local canoni-
cal format the intersection §p.

= P H(0)Np; (0) and B (f) = py H(0) N
= (¢%,7?) :=x—xo and

= (— (g be first order of a small parameter ¢,
and let us expand p2(x,0) = p2(xo+ ¢, 0o+ n) up
to second order of €. Substituting p2(Xo, lg) = 0in
that, we rewrite the remaining terms by

P2(¢,m) = [T n] wf ﬁj m

Denote the symmetric matrix in the right-hand side
by W. Each element of W includes a term depending
onthe second partial derivativesof f. It can bevan-
ished by the choice of the second derivatives of (23).
The W after vanishing the terms has an eigenvalue
of 0, and the eigenvector indicate the direction of

The following result is a direct consequence of Nx(f). After some calculation, we can lead an in-

Theorem 3:

Theorem 4 Supposethat { B, (f), B2, ()} isinlo-
cal canonical format a intersection o € Ny(f; M).
Let M§ be a constant input manifold that intersects
with @%,l(f ) at points that are sufficiently close to
Go- Then the controlled trajectory has each point
G € By (f)NMS asa point of external tangency.

For simplicity, we used, := d/du and dx :=
d/0x. The main result is as follows:

Theorem 5 If Rankd,f(gp)) # O at a point qp =
(Xo,ug) € Ny(f) and the linear part (A/b) =
(0«f(qo),0uf(qo)) of the state equation (1) have no
uncontrollable eigenvalues on the imaginary axis,
then there exists an input transformation (23), and
the corresponding state equation (24) has a BTMs
B, (f) with local canonical form at do.

proof The proof is easy but lengthy, and we only
give sketchit.

Let po(x) = O be the implicit expression of M.
The gradient vector dxpp(X) pointsoutward fromM.
Let us define a vector zand a matrix Q by

. [61p0(x0)| ~._ [F1100(x0)
2= [0;PO(X0)} Q= [aiip&xo)

01200(Xo)
02200(X0) |’

where g, = /09X and dij = d/dx'0x!. Let y; and
y> bethe eigenvalues of Q. By using an input trans-
formation (23), the eigenvalues of F := dyf ({o) are
specified for 0 and A # 0. If the linear part (A,b)
has an uncontrollable eigenvalue, then we take it to
be A. Choose dypo(Xo) such that FTz= 0. Let Go =
(Xo,0o) € Ny(f) be the corresponding coordinates
of do € Ny(f).” We set py(x,0) := f'(x,0)dipo(X)
and po(x,0) == f'(x,0)dp1(x, G), where f'dp is
written in summation convention, then we have

equality of y; and y» for the condition that the re-
maining eigenvalue of WY becomes positive regard-
less of the sign of A. This means that

p2({,n) >0

for any non-zero ({,n). On the other hand, (26) is
the condition that § € R2 (f; M) for § € B} Thus,
we have proved the theorem. O

(26)

Let us illustrate the meaning of local canonical
form of BTMs by a simple example. Consider the
following linear state equation:

1

Xt =x2+u=: fl(qg), ¥®

= —xt+2¢% =: %(q).
The null manifold of the equation, which is homeo-
morphic toR, is represented as

Ny(f)={gqe Qo|(x},X%,u)=a(2,1,-1),a € R}.
We take a ellipse:

po(X) = (X2 + x5+ (x3)?—1<0

as the defining set of the BTMs. (See Figure 1 (a).)
The horizontal axis of Figure 1 is anghein the po-

lar coordinate representation @f(x) = 0. The first
entrance regioﬁ&(f) (the gray colored portions in
Figure 1) has 2-connected components, thus there is

no dissipative boundary with respect to the defining

set. After a coordinate change= 19t — 102 + 0,
we take an another ellipse

15 5, 35 A2 135

1) 3 X+ 5 ()7 -1<0

as a defining set of the BTMs. (See Figure 1 (b).)
If we take theA appeared in the proof of Theorem
5 as negative, then the first entrance regkip be-
comes connected as shown in the figure (b). On the
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other hand, if we take tha@ as positive theriRl
becomes connected. In Figure 1, A, A, C and C’ [7]
are the intersection points &fy anddM. The first

BTM By, is the boundary line betweeRt andR:
(uncolored portions) except these points. In Figure

1 (b), the BTMs are locally canonicalized at C and [8]
C’, thus there appears no second BTMs. In the non-
linear case, we can suggest that this fact leads to
global information ofB}, from local canonical form

of BTMs by using the Conley index theory. 0]

10

2 R%J\
S~ B’
B A R? Y 0
. - R [10]
| ® m
U
10| /R2
= : Ri{ [11]
c
(b) 0 (2]

[12]

Figure 1: Examples of BTMs [13]
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