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Abstract: - Boundary tangency manifolds (BTMs) of a nonlinear state equation are for constructing the
level surface of an unknown control Lyapunov function generalized to gradient-like Morse-Smale controlled
systems. We differentiate a Morse-Smale function repeatedly along the ‘state equation’by regarding the
input as an independent variable. The BTMs are the nested sequence of submanifolds obtained from these
Lie-derivatives. In this paper, we show that there is a certain kind of local canonical form of BTMs on the
neighborhood of a noteworthy point. If the BTMs are in local canonical form then the trajectories of the
closed-loop system under a constant input has only the points of external tangency on its boundary of the
defining set of the BTMs.
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1 Introduction
A gradient-like Morse-Smale controlled (GLMSC)
system [6] is a closed-loop system that provides a
gradient-like Morse-Smale (GLMS) flow. We are
developing the theory of the GLMSC systems [2, 3,
4, 5, 7, 8, 9, 10, 11, 12]. It is aimed to solve the
global asymptotic stabilization problem for general
nonlinear state equations (may not necessarily be
feedback linearizable).

For the global asymptotic stabilization problem
of a given nonlinear system, the key idea of permit-
ting singular points to be contained in the controlled
system has been already presented in the beginning
of 1970’s [14, 18]. However, in order to carry out
the idea it has been necessary to wait for the devel-
opment in the theory of Conley index [1, 17, 20].
The Conley index theory, which is a topological the-
ory of dynamical systems, offers us various tools
for analyzing the global topological structures of
dynamical systems. Almost all these results were
shown in the early 1990’s. Our GLMSC system can
be easily handled as a system that can realize the
above-mentioned idea, and is based on the Conley
index theory.

Boundary tangency manifolds (BTMs) of a non-
linear state equation are for constructing the level
surface of a control Lyapunov function generalized
to GLMSC systems in the viewpoint of differential
topology [19].

We differentiate a Morse-Smale function repeat-
edly along that section of the vector bundle on the
configuration space (see Section 2 for detail) which
is defined by a given state equation. Briefly speak-
ing, the boundary tangency manifolds of a state
equation are obtained from the nested sequence of

subsets of common zeros of these Lie-derivatives.
In this paper, we show the existence of local

canonical form of the BTMs for a given nonlinear
state equation that satisfies a suitable assumption.
If the BTMs are in local canonical form then tra-
jectories of the closed-loop system under a constant
input have only the points of external tangency on
its boundary of the defining set of the BTMs. Local
canonical form of BTMs is closely associated with
the topology of the given state equation. If we spec-
ify a topological structure to the GLMSC system,
then we get significant information for constructing
an arbitrary level surface of the generalized con-
trol Lyapunov function from local canonical form
of BTMs.

The level surface of our generalized control Lya-
punov function has a self-intersection at each saddle
point of GLMSC systems. To analyze the level sur-
face with self-intersections, we need the discussion
for expressing the compact attractor of GLMSC
system as a CW-complex [13]. Thus, this subject
is not mentioned here. Further, in this paper, we
restrict our discussion to nonlinear state equations
with two-state variables and one-input.

This paper is an expansion of our paper [7]. In
[7], we discussed the same notion for linear state
equations.

2 Basic definitions and results
In this section, we outline the basic definitions and
results for GLMSC systems from our previous pa-
pers [2, 3, 4, 5, 8, 9].

Let us consider a classC3-nonlinear state equa-
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tion with x = (x1,x2) ∈ X andu ∈ U:

ẋ = f (x,u), (1)

where the state spaceX is a manifold that is home-
omorphic toR2 or S1×R (R is the real line andS1

is the unit circle), and the input spaceU is R.
Let

πu : Q0 := X×U → X, (2)

be a trivial fibered manifold over the state spaceX

with the total manifoldX×U, the base manifoldX,
the typical fiberU and the projectionπu as a surjec-
tive submersion. We call it the configuration space
of state feedback control systems. We often repre-
sent the fibered manifold (2) by the total manifold
Q0. Each pointq := (x,u) ∈ Q0 is called a configu-
ration of the control system.

Let E be a fibered manifold or a vector bundle.
Γ(E) denotes the set of all sections ofE. The map
in the right hand side of a state feedbacku = k(x)
defines a sectionk ∈ Γ(Q0). The imageMu(k) :=
k(X) is a 2-dimensional submanifold ofQ0. We call
it an input manifold:

Mu(k) := {q ∈ Q0 | u− k(x) = 0}. (3)

Let TX be the tangent bundle overX. Pulling
back TX over Q0 by πu, we construct a 2-
dimensional vector bundle, denoted by

τ : (πu)−1(TX) =: E → Q0. (4)

The mapf of the state equation (1) defines a section
of E. We will also refer to f ∈ Γ(E) as the state
equation.

The restriction off ∈ Γ(E) to an input manifold
Mu(k)⊂ Q0,

σ := f |Mu(k), (5)

is called a controlled system. Theσ can be iden-
tified with the vector field onMu(k). It is locally
given by

σ(q) = f (q)|q=(x,k(x)). (6)

On the other hand, a vector filed̂f ∈ X(X) on X

that makes commutative the following diagram:

(x,u;v)
E

πu∗−−−−→
(x;v)
TX

f

�
� f̂

Q0
(x,u)

k←−−−− X
(x)

(7)

is the coordinate expression of the controlled sys-
temσ ∈ X(Mu(k)) onX, and it is locally given by

f̂ (x) = f (x,k(x)). (8)

We also call it a controlled system.
We denote especially the zeros of the state equa-

tion f ∈ Γ(E) by ker( f ):

ker( f ) := f−1(0) = {q ∈ Q0 | f (q) = 0}. (9)

A constant solution (a singular point) of a con-
trolled system is the intersection of the input mani-
fold Mu(k) and ker( f ). Let J( f )(q) be the Jacobian
matrix of f at q ∈ Q0, and we denote its rank by
rankq( f ). Fora = 0,1,2, we define

K2
a ( f ) := {q ∈ Q0 | dimR

2− rankq( f ) = a}.

K2
0( f ) is the set of regular points off . The inter-

section ofK2
0( f ) and ker( f ):

Nx( f ) := ker( f )∩K2
0( f ) (10)

is an one-dimensional submanifold ofQ0. We call it
the null manifold of the state equation (1). In gen-
eral, ker( f )\Nx( f ) �= ∅. We can classify the com-
plement in some categories [8, 9] by usingK 2

1( f )
and K2

2( f ), which are the sets of critical points.
Nevertheless, the null manifold plays an essential
role in our application [3, 4, 6].

Let q̄ ∈ Mu(k) be a singular point of a controlled
systemσ ∈ X(Mu(k)). If the derivative ofDσ(q̄)
does not have 0∈ C as an eigenvalue, then we say
that q̄ is simple. If Dσ(q̄) have no eigenvalue on
the imaginary axis, then we say that ¯q is hyperbolic.
The following theorem is a basic result for us:

Theorem 1 ([3, 5]) A constant solution q̄ = (x̄, ū)∈
Mu(k)∩ker( f )⊂Q0 of a controlled system is a sim-
ple singular point if and only if q̄ is a transversal in-
tersection between Nx( f ) and Mu(k) in Q0. If q̄ is a
hyperbolic point then it is a transversal intersection
between Nx( f ) and Mu(k) in Q0.

Let E0 be the zero section of the vector bundle
E. Then, ker( f ) = Nx( f ) if and only if f (Q0) �
E0 in E. Since f ∈ Γ(E) is a continuous map, we
have cl(Nx( f )) ⊂ ker( f ). The state equation (1)
will said to be simple if ker( f ) = Nx( f ), and al-
most simple if ker( f ) = cl(Nx( f )). Henceforth, we
suppose that the state equation is almost simple.

In general, Nx( f ) has connected components
N1

x ,N
2
x , . . .. The union of some connected compo-

nents
Nx:λ := Nk1

x ∪Nk2
x ∪ ·· ·∪NkL

x (11)

will said to be an unit component orλ -component
of Nx( f ) with the indexλ := (k1,k2, · · · ,kL), if it
has the following properties:
(u1) cl(Nx:λ ) is the closure of aC3 immersion of a

connected 1-dimensional manifoldKλ .
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(u2) cl(Nx:λ ) is maximal as a subset of ker( f ) sat-
isfying the condition (u1).

Let Nx:λ be an unit component ofNx( f ), and

(x1,x2,u) = (φ1(β),φ2(β),φ3(β)), β ∈ Kλ (12)

be a parametric representation of cl(Nx:λ ). Suppose
that Mu(k) and Nx( f ) intersect transversally at a
point q̄∈Mu(k)∩Nx:λ ⊂Q0 in Q0 and the point ¯q is
on an connected componentNk

x:λ of Nx:λ . Then, we
define the local intersection number ofMu(k) with
Nx:λ at q̄ by

(Mu(k)◦Nx:λ )q̄ := sign(Det(G(q̄))), (13)

where

G(q̄) :=


 1 0 ∂1k(q̄(α ))

0 1 ∂2k(q̄(α ))
dβφ1(q̄) dβ φ2(q̄) dβφ3(q̄)


 .

Consider the matrix:

F(q̄) :=


∂1 f 1(q̄) ∂2 f 1(q̄) ∂u f 1(q̄)

∂1 f 2(q̄) ∂2 f 2(q̄) ∂u f 2(q̄)
−∂1k(q̄) −∂2k(q̄) 1


 ,

obtained from f (q) = 0 andu− k(x) = 0. There
exists an uniqueµk ∈ {1,−1} for each connected
componentNk

x:λ such that

sign(Det(F(q̄))) = µk sign(Det(G(q̄))) (14)

at any transversal intersection ¯q ∈ Mu(k)∩Nk
x:λ .

The Morse index of a hyperbolic point is the di-
mension of the unstable manifold. A hyperbolic
point is denoted byΣ+ if the Morse index is an even
number, and is denoted byΣ− if that is an odd num-
ber. Then, we have the following theorem on the re-
lation between a local intersection number ofMu(k)
with Nx:λ and the parity of the Morse index:

Theorem 2 ([5, 9]) Let q̄ ∈ Nk
x:λ ∩Mu be a hyper-

bolic point and (Mu ◦Nx:λ )q̄ ∈ {1,−1} be the local
intersection number. Then there exists an unique
isomorphism

θ(Nk
x:λ ) : {1,−1} −→ {Σ+,Σ−} (15)

for each connected component Nk
x:λ , and the iso-

morphism does not depend on the position of q̄ on
Nk

x:λ .

To probe the theorem, we define

θ(Nx:λ )((Mu(k)◦Nx:λ )q̄)

:=
{

Σ+ if µk · (Mu(k)◦Nx:λ )q̄ = 1,

Σ− if µk · (Mu(k)◦Nx:λ )q̄ = −1,

by µk in (14).

3 Boundary tangency manifolds
In this section, we summarize the basic defini-

tions and results for boundary tangency manifolds
from our previous papers [10, 11].

Let ξ ∈ X(X) be a vector field on a manifoldX.
A flow on ϕ : R×X → X is the set of all solution
trajectories of aξ . We say that ¯x is a constant so-
lution of the flow if ϕ (R, x̄) = x̄ at a point ¯x ∈ X.
If there exists a function that strictly decrease along
the solutions except on the constant solutions, i.e.
Lyapunov function in a generalized sense, then the
flow is called gradient-like.

Let ϕ be a gradient-like flow onX. We say that
the flowϕ is gradient-like Morse-Smale (GLMS)

• if the constant solutions ofϕ are a finite num-
ber of hyperbolic points only, and

• if the unstable manifoldW u(y) and the stable
manifoldW s(z) intersect transversally inX for
any hyperbolic pointsy,z ∈ X [22].

Let V be a function onX. If the negative gra-
dient flow of ẋ = −grad(V ) is GLMS, then theV is
called a Morse-Smale function onX. In general, the
Lyapunov function of GLMS flow is obtained from
a Morse-Smale function, and that itself is a Morse-
Smale function.

Let M ⊂ X be a level set of a Morse-Smale func-
tion on the state spaceX. Suppose thatM is a con-
nected submanifold with a boundary∂M of class
C3. Let us denote restrictions of the fibered mani-
fold Q0 to M and∂M by

π|M :M := M×U → M, (16)
π|∂M :∂M := ∂M×U → ∂M (17)

respectively. We will represent these fibered mani-
folds by their total manifoldsM and∂M.

The Poincar´e-Hopf index formula for vector
fields on a manifold with boundary [16] has been
extended by C. C. Pugh [19] to the case that the
vector field does not have uniform direction at each
point on the boundary. Moreover, this result has
been extended by C. McCord [15] to flows that in-
clude isolated invariant sets. The notion of bound-
ary tangency manifolds of control systems is a gen-
eralization of the results of C. C. Pugh and C. Mc-
Cord for control systems.

Let TQ0 be the tangent bundle andv ∈ Γ(E) be a
section. Then we define a mapv∗ : Q0 → TQ0 by

v∗(x,u) = (x,u;v(x),0) ∈ TQ0. (18)

Now we define subsets of∂M:

B1
M :={q ∈ B0

M| f∗(q) ∈ Tq(B0
M)},

B2
M :={q ∈ B1

M| f∗(q) ∈ Tq(B1
M)},
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whereB0
M := ∂M, and we call them the first and

second boundary tangency sets on the defining set
M respectively.

We denote the intersection ofNx( f ) and∂M by

Nx( f |∂M) := Nx( f )∩∂M. (19)

Sincef∗(q̄) = 0 at each point ¯q∈Nx( f |∂M), we get
q̄ ∈ B1

M andq̄ ∈ B2
M. For j = 1,2, we define thejth

open boundary tangency set by

B̂
j
M := B

j
M \Nx( f |∂M). (20)

If they satisfy the transversality condition:

f∗ �
B̂

j
M

TB
j
M in TB

j−1
M |B j

M,

then we callB̂ j
M the jth boundary tangency mani-

fold (BTM), and{B̂1
M,B̂2

M} the boundary tangency
manifolds (BTMs). If we need to specify the state
equation, we write such aŝB1

M( f ) for B̂1
M.

Let us defineR0− := M and R1− := {q ∈ ∂R0−|
f∗(q) points outward fromR0−}, where∂R0− = B0

M,
and we callR1− the first exit region. Further,
R1

+ := {q ∈ ∂R0−| f∗(q) points inward towardR0−}
is called the first entrance region. We will write
such asR1−( f ;M) for R1− if we need.

A subset µ(∂M) ⊂ Q0 is called a dissipative
boundary of the control system if there exist a defin-
ing setM ⊂ X of BTMs and a sectionµ ∈ Γ(∂M)
such that

µ(∂M) ⊂ R1
+( f ). (21)

For an input manifoldMu(k) including a dissipative
boundary, the subsetµ(∂M)⊂Mu(k) is a level sur-
face of a Lyapunov function defined locally on the
neighbourhood ofµ(∂M). This result does not de-
pend on the gradient and the curvature ofMu(k) at
each ¯q ∈ µ(∂M).

Using the above definitions, the problem to con-
struct a level surface of a generalized control Lya-
punov function is equivalent to the problem how to
find a defining setM of BTMs that allow a dissipa-
tive boundary of the control system. We will follow
C. C. Pugh for considering the problem, and let us
define the second exit and entrance sets.

The second exit setR2− is a set ofq∈ ∂ (R̄1−) such
that f∗(q) points outward fromR1− in the way simi-
lar to theR1−, and the second entrance setR2

+ is a set
of q ∈ ∂ (R̄1−) such thatf∗(q) points inward toward
R1−, whereR̄ = cl(R).

If B̂1
M is the first BTM then we have

∂ R̄1
− = ∂ R̄1

+ = B1
M.

Further, ifB̂2
M is the second BTM then we have

B1
M = R2

−
B2
M 
R2

+, (22)

where
 means disjoint union. LetMc
u := Mu(k̄)

be an input manifold such thatu = k̄(x) = constant.
It is easy to show that the intersection point ofMc

u

andB̂1
M belongs toB̂2

M if and only if the point is a
tangency point of them.

Let us suppose that̂B2
M is the BTM, and consider

the geometrical meaning ofR2− andR2
+. Fix orien-

tations ofQ0 andMu(k). A point q̄ ∈ Mu(k)∩ B̂1
M

be the transversal intersection inQ0, and Mc
u be

an input manifold with a constant input such that
q̄ ∈ Mc

u. Then, we can define the local intersection
numbers(Mu ◦ B̂1

M)q̄ and(Mc
u ◦ B̂1

M)q̄ at the point ¯q
if Mc

u �q̄ B̂1
M in Q0. Thus, we define another local

intersection number(Mu • B̂1
M)q̄ by the following

way: (Mu • B̂1
M)q̄ = 1 if (Mu ◦ B̂1

M)q̄ agrees with
(Mc

u ◦ B̂1
M)q̄, and(Mu • B̂1

M)q̄ = −1 if (Mu ◦ B̂1
M)q̄

disagrees with(Mc
u ◦ B̂1

M)q̄. Then, we have the fol-
lowing result:

Theorem 3 ([5, 11]) Suppose that Mu �q̄ B̂1
M in Q0

at q̄ ∈ Mu ∩ B̂1
M. If q̄ ∈ R2− and (Mu • B̂1

M)q̄ = 1
then the controlled trajectory has q̄ = (x̄,k(x̄)) ∈
Mu as a point of internal tangency, and if (Mu •
B̂1

M)q̄ = −1 then that has q̄ as a point of external
tangency. On the other hand, if q̄ ∈ R2

+ and (Mu •
B̂1

M)q̄ = 1 then the controlled trajectory has q̄ as a
point of external tangency, and if (Mu • B̂1

M)q̄ =−1
then that has q̄ as a point of internal tangency.

4 Local canonical form
In this section, we define local canonical form

of BTMs, and state the result of the existence of
canonical form.

If we use an input transformation:

u = ω(x, ũ) (23)

for a given state equation (1), then we denote the
new state equation by

ẋ = f̃ (x, ũ) := f (x,ω(x, ũ)). (24)

We denote the inverse map of (23) by ˜u = ω−1
x (u)

for a fixedx ∈ X.
Let M ⊂ X be a defining set of BTMs, and

Nx( f ;∂M) := Nx( f )∩∂M

be the intersection ofNx( f ) and ∂M. In gen-
eral,Nx( f ;∂M) has several connected components.
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If ∂M andNx( f ) intersect transversally then each
connected component is a discrete point (it is al-
ways true for dimU = 1). We choose such aM and
denote one of them byq0 = (x0,u0) ∈ Nx( f ;∂M).

Definition 1 For a given state equation (1), if there
exist an input transformation (23) and a defining set
M ⊂ X of a BTM B̂1

M such that the B̂1
M satisfies

B̂1
M( f̃ )∩Wq̃0 ⊂ R2

+( f̃ ,M) (25)

on an open neighborhood Wq̃0 ⊂ ∂M of q̃0 :=
(x0, ũ0) = (x0,ω−1

x0
(u0)) ∈ Nx( f̃ ;∂M), then we say

that the BTMs {B̂1
M( f̃ ),B̂2

M( f̃ )} is in local canoni-
cal form at the intersection q̃0.

The following result is a direct consequence of
Theorem 3:

Theorem 4 Suppose that {B̂1
M( f̃ ),B̂2

M( f̃ )} is in lo-
cal canonical form at a intersection q̃0 ∈ Nx( f̃ ;M).
Let Mc

ũ be a constant input manifold that intersects
with B̂1

M( f̃ ) at points that are sufficiently close to
q̃0. Then the controlled trajectory has each point
q̃ ∈ B̂1

M( f̃ )∩Mc
ũ as a point of external tangency.

For simplicity, we use∂u := ∂/∂u and ∂x :=
∂/∂x. The main result is as follows:

Theorem 5 If Rank(∂u f (q0)) �= 0 at a point q0 =
(x0,u0) ∈ Nx( f ) and the linear part (A,b) :=
(∂x f (q0),∂u f (q0)) of the state equation (1) have no
uncontrollable eigenvalues on the imaginary axis,
then there exists an input transformation (23), and
the corresponding state equation (24) has a BTMs
B̂1

M( f̃ ) with local canonical form at q̃0.

proof The proof is easy but lengthy, and we only
give sketch it.

Let ρ0(x) = 0 be the implicit expression of ∂M.
The gradient vector ∂xρ0(x) points outward from M.
Let us define a vector z and a matrix Q by

z :=
[
∂1ρ0(x0)
∂2ρ0(x0)

]
,Q :=

[
∂11ρ0(x0) ∂12ρ0(x0)
∂21ρ0(x0) ∂22ρ0(x0)

]
,

where ∂i = ∂/∂xi and ∂i j = ∂/∂xi∂x j. Let γ1 and
γ2 be the eigenvalues of Q. By using an input trans-
formation (23), the eigenvalues of F := ∂x f̃ (q̃0) are
specified for 0 and λ �= 0. If the linear part (A,b)
has an uncontrollable eigenvalue, then we take it to
be λ . Choose ∂xρ0(x0) such that FT z = 0. Let q̃0 =
(x0, ũ0) ∈ Nx( f̃ ) be the corresponding coordinates
of q0 ∈ Nx( f ). We set ρ1(x, ũ) := f̃ i(x, ũ)∂iρ0(x)
and ρ2(x, ũ) := f̃ i(x, ũ)∂iρ1(x, ũ), where f̃ i∂iρ is
written in summation convention, then we have

B1
M( f ) = ρ−1

0 (0)∩ρ−1
1 (0) and B2

M( f ) = ρ−1
0 (0)∩

ρ−1
1 (0)∩ ρ−1

2 (0). Let ζ = (ζ 1,ζ 2) := x− x0 and
η := ũ− ũ0 be first order of a small parameter ε ,
and let us expand ρ2(x, ũ) = ρ2(x0 + ζ , ũ0 + η ) up
to second order of ε . Substituting ρ2(x0, ũ0) = 0 in
that, we rewrite the remaining terms by

ρ̄2(ζ ,η ) :=
[
ζ T η

][
Ψ1 ψ3
ψT

3 ψ2

][
ζ
η

]
.

Denote the symmetric matrix in the right-hand side
by Ψ. Each element of Ψ includes a term depending
on the second partial derivatives of f̃ . It can be van-
ished by the choice of the second derivatives of (23).
The Ψ after vanishing the terms has an eigenvalue
of 0, and the eigenvector indicate the direction of
Nx( f̃ ). After some calculation, we can lead an in-
equality of γ1 and γ2 for the condition that the re-
maining eigenvalue of Ψ becomes positive regard-
less of the sign of λ . This means that

ρ̄2(ζ ,η ) > 0 (26)

for any non-zero (ζ ,η ). On the other hand, (26) is
the condition that q̃ ∈ R2

+( f̃ ;M) for q̃ ∈ B̂1
M. Thus,

we have proved the theorem. �
Let us illustrate the meaning of local canonical

form of BTMs by a simple example. Consider the
following linear state equation:

ẋ1 = x2 +u =: f 1(q), ẋ2 = −x1 +2x2 =: f 2(q).

The null manifold of the equation, which is homeo-
morphic toR, is represented as

Nx( f ) = {q ∈ Q0 |(x1,x2,u) = α (2,1,−1),α ∈ R}.
We take a ellipse:

ρ0(x) = (x1)2 + x1x2 +(x2)2−1 < 0

as the defining set of the BTMs. (See Figure 1 (a).)
The horizontal axis of Figure 1 is angleθ in the po-
lar coordinate representation ofρ0(x) = 0. The first
entrance regionR1

+( f ) (the gray colored portions in
Figure 1) has 2-connected components, thus there is
no dissipative boundary with respect to the defining
set. After a coordinate changeu = 19x1−10x2 + ũ,
we take an another ellipse

15
128

(x1)2− 35
32

x1x2 +
135
32

(x2)2−1 < 0

as a defining set of the BTMs. (See Figure 1 (b).)
If we take theλ appeared in the proof of Theorem
5 as negative, then the first entrance regionR1

+ be-
comes connected as shown in the figure (b). On the
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other hand, if we take theλ as positive thenR1−
becomes connected. In Figure 1, A, A’, C and C’
are the intersection points ofNx and∂M. The first
BTM B̂1

M is the boundary line betweenR1
+ andR1−

(uncolored portions) except these points. In Figure
1 (b), the BTMs are locally canonicalized at C and
C’, thus there appears no second BTMs. In the non-
linear case, we can suggest that this fact leads to
global information ofB̂1

M from local canonical form
of BTMs by using the Conley index theory.

(a)

(b)
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Figure 1: Examples of BTMs
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