On the Approximation Properties of q-Laguerre type Modification of Meyer König and Zeller Operators

ABDULLAH ALTIN, OGÜN DOĞRU and M. ALİ ÖZARSLAN

Department of Mathematics Ankara University, Faculty of Science 06100 Tandoğan, Ankara TURKEY

http://science.ankara.edu.tr/~dogruhttp://science.ankara.edu.tr/~altin

Abstract: - In the present paper, we introduce a Laguerre type positive linear operators based on the q-integers including the q-Meyer König and Zeller operators defined by Doğru and Duman in [7]. Then we obtain some results about Korovkin type approximation properties and rates of convergence for this generalization.

Key-Words: - Positive linear operators, q-Meyer König and Zeller operators, q- Laguerre polynomials, modulus of continuity.

1 Introduction

The following operators were introduced by Meyer-König and Zeller [11]:

$$M_n^*(f;x) = \sum_{k=0}^{\infty} f\left(\frac{k}{k+n+1}\right) m_{n,k}(x) \quad (0 \le x < 1) \quad (1.1)$$

where

$$m_{n,k}(x) = \binom{n+k}{k} x^k (1-x)^{n+1}.$$

To obtain the monotonicity properties of the operators (1.1), Cheney and Sharma [4] were introduced the following operators:

$$M_n(f;x) = \sum_{k=0}^{\infty} f\left(\frac{k}{k+n}\right) m_{n,k}(x) \quad (0 \le x < 1). \quad (1.2)$$

The operators (1.2) are also called as Bernstein power series in the literature.

A generalization of the Meyer-König and Zeller operators has been given by Doğru in [5]. Then a Stancu type generalization of the operators in [5] is defined by Agratini in [1].

Recently, in [2], Altin, Doğru and Taşdelen studied on some approximation properties of a generalization of Meyer-König and Zeller operators by generating functions.

The q-type generalization in approximation theory were introduced by Phillips [14] for the classical Bernstein polynomials in 1996. This generalization is obtained by replacing the general binomial expansion with q-binomial expansion. The rate of convergence and Voronovskaja type asymptotic

estimate are obtained by Phillips and colleagues for this *q*-generalization of Bernstein polynomials. The different convergence properties of this generalization has been obtained by Goodman, Oruç and Phillips [8].

In this point, recalling some definitions about *q*-integers will be suitable:

For any fixed real number q > 0, we denote q-integers by [r] where

$$[r] = \begin{cases} (1 - q^r)/(1 - q) & \text{; if } q \neq 1 \\ r & \text{; if } q = 1 \end{cases}$$
 (1.3)

Also, q-binomial coefficients are defined by

$$\begin{bmatrix} n \\ r \end{bmatrix} = \frac{[n]!}{[r]![n-r]!}, \ r = 0,1,...,n,$$

where

$$[r]! = \begin{cases} [r][r-1]...[1] & \text{; if } r = 1,2,... \\ 1 & \text{; if } r = 0 \end{cases}$$

and $n, r \in N_0$.

It is clear that when q = 1, the q-binomial coefficients reduce to ordinary binomial coefficients.

In [15], Triff defined the Meyer-König and Zeller operators based on the q-integers as follows:

$$M_{n,q}(f;x) = u_{n,q}(x) \sum_{k=0}^{\infty} f \binom{[k]}{[k+n]} \binom{n+k}{k} x^k$$
 (1.4)

for $0 \le x \le a < 1$ where

$$u_{n,q}(x) = \prod_{s=0}^{n} (1 - xq^{s}).$$

But, unfortunately, it is not possible to obtain the explicit formulae for the second moment of $M_{n,q}(f;x)$. Therefore, in [7] following generalization of the q-Meyer König and Zeller operators is introduced by Doğru and Duman:

$$M_n(f;q;x) = u_{n,q}(x) \sum_{k=0}^{\infty} f\left(\frac{q^n[k]}{[k+n]}\right) \begin{bmatrix} n+k \\ k \end{bmatrix} x^k$$
 (1.5)

for $0 \le x \le a < 1$.

The A-statistical approximation properties of $M_n(f;q;x)$ are investigated in [7]. Moreover, in [7], the rates of A-statistical approximation of $M_n(f;q;x)$ to f(x) are estimated by using the modulus of continuity, Peetre K-functionals and Lipschitz type maximal functions.

In this study, the q-Laguerre type positive linear operators including the operators $M_n(f;q;x)$ are defined and their Korovkin type approximation properties and rates of convergence are investigated.

2 Construction of *q*-Laguerre Type Operators

In [4], Cheney and Sharma also introduced the following operators:

$$P_n(f; x, t) = (1 - x)^{n+1} \exp\left(\frac{tx}{1 - x}\right) \sum_{k=0}^{\infty} f\left(\frac{k}{k + n}\right) L_k^{(n)}(t) x^k$$

for $0 \le x < 1$, $-\infty < t \le 0$ where $L_k^{(n)}(t)$ denotes the Laguerre polynomials and investigated the approximation properties of these operators.

Because of
$$L_k^{(n)}(0) = \binom{n+k}{k}$$
, $M_n(f;x)$ is the

special case of the operators $P_n(f;x)$.

In this part, we will define a modification of the operators $P_n(f;x)$ based on the *q*-integers.

The *q*-Laguerre polynomials have the explicit expression (see [9, p.29], [10, p.57] and [12, p.21])

$$L_n^{(\alpha)}(t;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} \sum_{k=0}^n \frac{(q^{-n};q)_k q^{\binom{k}{2}} (1-q)^k (q^{n+\alpha+1}x)^k}{(q^{\alpha+1};q)_k (q;q)_k}$$
(2.1)

where

$$(x;q)_n = \begin{cases} 1 & \text{if } n=0\\ (1-x)(1-xq)...(1-xq^{n-1}) & \text{if } n \in \mathbb{N}. \end{cases}$$

Moak [12] gave the following recurrence relation and generating function for the q-Laguerre polynomials

$$tL_{k-1}^{(\alpha+1)}(t;q) = [k+\alpha]q^{-\alpha-k}L_{k-1}^{(\alpha)}(t;q) - [k]q^{-\alpha-k}L_k^{(\alpha)}(t;q)$$
(2.2)

$$F_{\alpha}(x,t) = \frac{(xq^{\alpha+1};q)_{\infty}}{(x;q)_{\infty}} \sum_{m=0}^{\infty} \frac{q^{m^{2}+\alpha m}[-(1-q)xt]^{m}}{(q;q)_{m}(xq^{\alpha+1};q)_{m}}$$

$$= \sum_{k=0}^{\infty} x^{k} L_{k}^{(\alpha)}(t;q)$$
(2.3)

where $\operatorname{Re} \alpha > -1$, k = 1, 2, ... and

$$(x;q)_{\infty} = \prod_{s=0}^{\infty} (1 - xq^s).$$

We consider the sequence of linear positive operators

$$V_n(f;q;x,t) = \frac{1}{F_n(x,t)} \sum_{k=0}^{\infty} f\left(\frac{q^n[k]}{[k+n]}\right) L_k^{(n)}(t;q) x^k \quad (2.4)$$

where $x \in [0,1], t \in (-\infty,0], q \in (0,1]$ and $\{F_n(x,t)\}_{n \in \mathbb{N}}$ is the generating functions for the *q*-Laguerre polynomials which was given in (2.3).

If we replace
$$f\left(\frac{[k]}{[k+n]}\right)$$
 by $f\left(\frac{q^n[k]}{[k+n]}\right)$ in (2.4), then

these operators turns to q-Laguerre type generalization of Trif's operators which was investigated by Özarslan in [13].

Notice that, since

$$L_k^{(n)}(0;q) = \frac{(nq;q)_k}{(q;q)_k} = \begin{bmatrix} n+k \\ k \end{bmatrix}$$

and

$$\frac{1}{F_n(x,0)} = \frac{(x,q)_{\infty}}{(xq^{n+1},q)_{\infty}} = \prod_{s=0}^{n} (1 - xq^s) = u_{n,q}(x)$$

then the operators in (1.5) is the special case of $V_n(f;q;x,t)$ for t=0. Also note that, we have

$$V_n(f;1;x,t) = P_n(f;x,t)$$

To obtain the approximation properties of the operators $V_n(f;q;x,t)$, we need the following lemmas.

Lemma 2.1. We have

$$F_{n+1}(x,t) \le \frac{F_n(x,t)}{(1-aq^{n+1})}.$$

Proof. Since $q \le 1$ and $(xq^{n+m+1};q)_m \ge (1-aq^{n+1})$

$$\begin{split} F_{n+1}(x,t) &= \frac{(xq^{n+2};q)_{\infty}}{(x;q)_{\infty}} \sum_{m=0}^{\infty} \frac{q^{m^2+nm+m}[-(1-q)xt]^m}{(q;q)_m (xq^{n+2};q)_m} \\ &= \frac{(xq^{n+1};q)_{\infty}}{(x;q)_{\infty}} \sum_{m=0}^{\infty} \frac{q^{m^2+nm+m}[-(1-q)xt]^m}{(q;q)_m (xq^{n+1};q)_m (1-xq^{n+m+1})} \\ &\leq \frac{(xq^{n+1};q)_{\infty}}{(1-aq^{n+1})(x;q)_{\infty}} \sum_{m=0}^{\infty} \frac{q^{m^2+nm}[-(1-q)xt]^m}{(q;q)_m (xq^{n+1};q)_m} \\ &= \frac{F_n(x,t)}{(1-aq^{n+1})}. \end{split}$$

Lemma 2.2. For all $n \in \mathbb{N}$, $x \in [0,a](0 < a < 1)$, we have

$$|V_n(s;q;x,t)-x| \le \frac{|t|x}{[n](1-xq^{n+1})} + (q^n-1)x.$$

Proof. Using (2.2) in (2.4), we have

$$V_{n}(s;q;x,t) = \frac{q^{n}}{F_{n}(x,t)} \sum_{k=1}^{\infty} \frac{[k]}{[n+k]} L_{k}^{(n)}(t;q) x^{k}$$

$$= \frac{q^{n}x}{F_{n}(x,t)} \sum_{k=1}^{\infty} \left\{ L_{k-1}^{(n)}(t;q) - \frac{q^{k+n}t}{[n+k]} L_{k-1}^{(n+1)}(t;q) \right\} x^{k-1}. (2.5)$$

Since

$$\frac{-x}{F_n(x,t)} \sum_{k=0}^{\infty} \frac{q^{k+n+1}t}{[n+k+1]} L_k^{(n+1)}(t;q) x^k \ge 0$$

then

$$V_n(s;q;x,t) - x \ge (q^n - 1)x.$$
 (2.6)

Taking into consideration $[n] \le [n+k](n,k \in N_0)$ and $0 < q \le 1$ in (2.5) and using Lemma 2.1, we get

$$V_{n}(s;q;x,t) \leq x - \frac{tx}{[n]} \frac{F_{n+1}(x,t)}{F_{n}(x,t)}$$

$$\leq x - \frac{tx}{[n](1-aq^{n+1})}.$$
(2.7)

From (2.6) and (2.7) the proof is completed. **Lemma 2.3.** For all $n \in \mathbb{N}$, $x \in [0, a](0 < a < 1)$, we have

$$\left|V_n(s^2;q;x,t) - x^2\right| \le \frac{|t|x(1+x)}{\lceil n \rceil (1-xq^{n+1})} + \frac{x}{\lceil n \rceil}.$$
 (2.8)

Proof. From the definition of the operator one can

$$V_n(s^2;q;x,t) = \frac{q^{2n}}{F_n(x,t)} \sum_{k=1}^{\infty} \left(\frac{[k]}{[n+k]}\right)^2 L_k^{(n)}(t;q) x^k. (2.9)$$

Using the recurrence formula (2.2) twice and the fact that

$$[k] = [k-1] + q^{k-1}$$
,

we can prove that

$$\left(\frac{[k]}{[n+k]}\right)^{2} L_{k}^{(n)}(t;q) = \frac{[k-1]}{[n+k-1]} L_{k-2}^{(n)}(t;q)
- \frac{q^{n+k-1}t}{[n+k]} L_{k-2}^{(n+1)}(t;q)
+ \frac{q^{k-1}}{[n+k]} L_{k-1}^{(n)}(t;q)
- \frac{q^{n+k}[k]t}{([n+k])^{2}} L_{k-1}^{(n+1)}(t;q).$$

So,

$$V_{n}(s^{2};q;x,t) - x^{2} \leq \left(\frac{q^{2n}}{F_{n}(x,t)} \sum_{k=2}^{\infty} \frac{[k-1]}{[n+k-1]} L_{k-2}^{(n)}(t;q) x^{k} - x^{2}\right)$$

$$+ \left|\frac{q^{2n}t}{F_{n}(x,t)} \sum_{k=2}^{\infty} \frac{q^{n+k-1}}{[n+k]} L_{k-2}^{(n+1)}(t;q) x^{k}\right|$$

$$+ \left|\frac{q^{2n}}{F_{n}(x,t)} \sum_{k=1}^{\infty} \frac{q^{k-1}}{[n+k]} L_{k-1}^{(n)}(t;q) x^{k}\right|$$

$$+ \left|\frac{q^{2n}t}{F_{n}(x,t)} \sum_{k=1}^{\infty} \frac{q^{n+k}[k]}{[n+k]^{2}} L_{k-1}^{(n+1)}(t;q) x^{k}\right|. (2.10)$$

Thus the right member of (2.10) splits naturally into four parts, which we analysis separately below. Since 0 < q < 1 and $\{[k],[n]\} \le [k+n]$, it is obvious that

$$\frac{q^{n+k}[k]}{\left([n+k]\right)^2} \le \frac{1}{[n]}.$$

We get, using Lemma 2.

$$\left| \frac{q^{2n}t}{F_n(x,t)} \sum_{k=1}^{\infty} \frac{q^{n+k}[k]}{[(n+k])^2} L_{k-1}^{(n+1)}(t;q) x^k \right| \le \frac{|t|x}{[n](1-xq^{n+1})}$$
 (2.11)

and

$$\frac{q^{2n}}{F_n(x,t)} \sum_{k=1}^{\infty} \frac{q^{k-1}}{[n+k]} L_{k-1}^{(n)}(t;q) x^k \le \frac{x}{[n]}.$$
 (2.12)

In a similar manne

$$\left| \frac{q^{2n}t}{F_n(x,t)} \sum_{k=2}^{\infty} \frac{q^{n+k-1}}{[n+k]} L_{k-2}^{(n+1)}(t;q) x^k \right| \le \frac{x^2t}{[n](1-xq^{n+1})}. \tag{2.13}$$

Finally, since $[k-1] \le [n+k-1]$, we can write

$$\frac{q^{2n}}{F_n(x,t)} \sum_{k=2}^{\infty} \frac{[k-1]}{[n+k-1]} L_{k-2}^{(n)}(t;q) x^k - x^2 \le 0.$$
 (2.14)

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp220-224)

On the other hand, using the expression

$$s^2 - x^2 = (s - x)^2 + 2xs - 2x^2$$

we may write

$$V_n(s^2; q; x, t) - x^2 = V_n((s - x)^2; q; x, t) + 2xV_n((s - x); q; x, t).$$

Thus from (2.11), (2.12), (2.13) and (2.14) we have (2.8) immediately.

In the proof of these lemmas, we used the similar technique given by Doğru in [5] (see also [6]).

3 Rate of Convergence

In this section, we will compute the rate of convergence of $V_n(f;q;x,t)$ to f(x) by means of the classical modulus of continuity.

Let $f \in C[a,b]$. The modulus of continuity of f denoted by $\omega(f;\delta)$, is defined as

$$\omega(f;\delta) = \sup_{\substack{|s-x| \le \delta \\ s, x \in [a,b]}} |f(s) - f(x)|.$$

It is also well known that for any $\delta \ge 0$

$$|f(s) - f(x)| \le \omega(f, \delta) \left(\frac{|s - x|}{\delta} + 1\right).$$
 (3.1)

Notice that, we will use the notation ||f|| instead of $||f||_{C[0,a]}$ for abbreviation.

Details for modulus of continuities and smoothness can be found in [3].

Theorem 3.1. For all $f \in C[0,a]$, we have $||V_n(f;q,t) - f|| \le 2\omega(f;\delta_n)$

where

$$\delta_n = \left(\frac{|t|(2a+a^2)}{[n](1-aq^{n+1})} + \frac{a}{[n]} + (q^n-1)a\right)^{\frac{1}{2}}.$$

Proof. Let $f \in C[0,a]$. By linearity and monotonicity of $V_n(f;q;x,t)$ to according to f(x) and using (3.1), we obtain

$$|V_n(f;q;x,t) - f(x)| \le V_n(|f(s) - f(x)|;q;x,t)$$

$$\leq \omega(f;\delta_n)V_n\left(1+\frac{|s-x|}{\delta_n};q;x,t\right)$$

$$=\omega(f;\delta_n)\left[1+\frac{1}{\delta_n}\frac{1}{F_n(x,t)}\sum_{k=1}^{\infty}\left|\frac{q^n[k]}{[k+n]}-x\right|L_k^{(n)}(t;q)x^k\right].$$

By the Cauchy - Schwarz inequality we have

$$\left|V_n(f;q;x,t)-f(x)\right|\leq \omega(f;\delta_n)\left\{1+\frac{1}{\delta_n}(V_n((s-x)^2;q;x,t))^{\frac{1}{2}}\right\}.$$

This implies that

$$||V_{n}(f;q;.,t) - f(.)|| \le \omega(f;\delta_{n}) \left[1 + \frac{1}{\delta_{n}} \times \sup_{x \in [0,a]} (V_{n}((s-x)^{2};q;x,t))^{\frac{1}{2}} \right].$$
(3.2)

For each $x \in [0, a]$, one can write

$$V_n((s-x)^2; q; x, t) \le \left| V_n(s^2; q; x, t) - x^2 \right| + 2x |V_n(s; q; x, t) - x|.$$

So, by Lemma 2.2 and Lemma 2.3 we get

$$\sup_{x \in [0,a]} V_n((s-x)^2; q; x, t) \le \left\| V_n(s^2; q; x, t) - x^2 \right\|$$

$$+ 2a \left\| V_n(s; q; x, t) - x \right\|$$

$$\le \frac{\left| t \middle| a(2+a) \right|}{[n](1-aq^{n+1})} + \frac{a}{[n]}$$

$$+ (q^n - 1)a$$
(3.3)

and combining (3.2) with (3.3), the proof is completed.

Remark 3.2. Since $\delta_n \to 0$ as $n \to \infty$, under the assumption $\frac{t}{[n]} \to 0$, we obtain a rate of convergence for $V_n(f;q;x,t)$ by Theorem 3.1.

References:

- [1] O. Agratini, Korovkin type error estimates for Meyer-König and Zeller operators, Math. Ineq. Appl. 4 (2001), 119-126.
- [2] A. Altın, O. Doğru and F. Tasdelen, The generalization of Meyer-Konig and Zeller operators by generating functions, J. Math. Anal. Appl. 312 (2005) 181-194.
- [3] G.A. Anastassiou and S.G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, *Birkhäuser*, *Boston*, 2000.
- [4] E.W. Cheney and A. Sharma; Bernstein power series, Canad. J. Math., 16(1964), 241-253.
- [5] O. Doğru, Approximation order and asymptotic approximation for Generalized Meyer-König and Zeller operators, Math. Balkanica, N.S., no.3-4, 12(1998), 359-368.
- [6] O. Doğru, M.A. Özarslan, F. Taşdelen, On positive operators involving a certain class of generating functions, Stud. Sci. Math. Hungarica 41 (4)(2004), 415-429.

- [7] O. Doğru and O. Duman, Statistical approximation of Meyer König and Zeller operators based on q-integers, Publ. Math. Debrecen (in press).
- [8] T.N.T. Goodman, H. Oruç and G.M. Phillips, Convexity and generalized Bernstein polynomials, Proc. Roy. Soc. Edinburg 42, (1999), 179-190.
- [9] W. Hahn, Über orthogonalpolynome, die q-differenzengleichungen genügen, Math. Nachr. 2(1949), 4-34.
- [10] F.H. Jackson, Basic double hypergeometric functions (II), Quart. J. Math. Oxford Ser.15(1944), 49-61.
- [11] W. Meyer-König and K. Zeller; Bernsteinsche potenzreihen, Studia Math., 19(1960), 89-94.
- [12] D.S. Moak, The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl., 81(1981), 20-47.
- [13] M.A. Özarslan, q-Laguerre Type Linear Positive Operators, Stud. Sci. Math. Hungarica (accepted for publication).
- [14] G.M. Phillips, On generalized Bernstein polynomials, G.A. Watson (Eds.), Numerical Analysis: A. R. Mitchell 75th Birthday Volume, World Science, Singapore, (1996), 263-269.
- [15] T. Triff, Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx. no:2, 29(2000), 221-229.