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Abstract: - In the present paper, we introduce a Laguerre type positive linear operators based on the g-integers
including the g-Meyer Konig and Zeller operators defined by Dogru and Duman in [7]. Then we obtain some
results about Korovkin type approximation properties and rates of convergence for this generalization.
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1 Introduction
The following operators were introduced by
Meyer-Konig and Zeller [11]:

M;(f;x)zif(mﬁﬁ)mn,k(x) 0<x<1) (1)
k=0

where

n+k
mn,k(x)z( ) Jxk(l—x)””.
To obtain the monotonicity properties of the
operators (1.1), Cheney and Sharma [4] were
introduced the following operators:

Mn(f;x)zif(kﬁn)nn,k(x) 0<x<1). (1.2)
k=0 ___

The operators (1.2) are also called as Bernstein
power series in the literature.

A generalization of the Meyer-Konig and Zeller
operators has been given by Dogru in [5]. Then a
Stancu type generalization of the operators in [5] is
defined by Agratini in [1].

Recently, in [2], Altin, Dogru and Tasdelen studied
on some approximation properties of a
generalization of Meyer-Konig and Zeller operators
by generating functions.

The g-type generalization in approximation theory
were introduced by Phillips [14] for the classical
Bernstein polynomials in 1996. This generalization
is obtained by replacing the general binomial
expansion with -binomial expansion. The rate of
convergence and Voronovskaja type asymptotic

estimate are obtained by Phillips and colleagues for
this g-generalization of Bernstein polynomials. The
different  convergence properties of  this
generalization has been obtained by Goodman,
Orug and Phillips [8].

In this point, recalling some definitions about Q-
integers will be suitable:

For any fixed real number ¢ >0, we denote Q-

integers by [r] where

[r]:{a—q y(1-a) ;if g1

1.3
r ;if =1 (13)

Also, g-binomial coefficients are defined by

n
_ [ -
[r} = trnerye T 0,1,...,n,

e [ =101 Cif r=12...
a 1 Sif r=0

where
and n,r € N,.

It is clear that when @q=1 the (-binomial

coefficients reduce to ordinary binomial
coefficients.

In [15], Triff defined the Meyer-Konig and Zeller
operators based on the g-integers as follows:

> n+k
Mn,q(f;x>=un,q(x>zf(‘k[i]n{ ) }xk (1.4)
k=0 _—___~
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for 0 < X < a <1where
n
Ung () = [T0-x0°).
s=0

But, unfortunately, it is not possible to obtain the
explicit formulae for the second moment of
Mp q(f;X). Therefore, in [7] following generaliz-

ation of the g-Meyer Konig and Zeller operators is
introduced by Dogru and Duman:

M (f;0:%) = nq(X)Zf(qkiﬂj{ :k}‘k (1.5)

for 0<x<a<l.

The A-statistical approximation properties of
M,(f;q;X) are investigated in [7]. Moreover, in
[7], the rates of A-statistical approximation of
M,(f;q;X) to f(x) are estimated by using the
modulus of continuity, Peetre K-functionals and
Lipschitz type maximal functions.

In this study, the q-Laguerre type positive linear
operators including the operators M,(f;q;X) are

defined and their Korovkin type approximation
properties and rates of convergence are
investigated.

2 Construction of g-Laguerre Type
Operators

In [4], Cheney and Sharma also introduced the
following operators:

PL(F3x,0) = (1= )™ expl L )i (e

for 0 < x<1,—0<t<0 where L&n)(t) denotes the

Laguerre polynomials and investigated the
approximation properties of these operators.

n+k
Because of L&n)(O)zt K J, M,(f;x) is the

special case of the operators P, (f;X) .

In this part, we will define a modification of the
operators P,(f;X) based on the g-integers.

The g-Laguerre polynomials have the explicit
expression (see [9, p.29], [10, p.57] and [12, p.21])

[k) K n+oa+l, Kk
K9 /0= (@

Q)n z(q ":9)
(q dn k=0 (q o+l

L (t;q) =

sk (4:0k

2.1)

where

y 1 if n=0
(X:0)n = 1-x)(1-xq)...1-xq"™") if neN.

Moak [12] gave the following recurrence relation
and generating function for the g-Laguerre
polynomials

LD (6q) = [k + alg LS ta) - [KIg L@ t:q)

(2.2)
2
a*h), & qM M (1-g)xt]™
P (6D =" (@:m0q** L)
=0 m Imo23)
= YK (a)(t )
k=0

where Rea > -1, k =1,2,... and
(%) = [T(1-x0°).
s=0

We consider the sequence of linear positive
operators

Vo(fia:xt) = F(l t)kif[mj(“)(t DX (2.4)
0

where x €[0,1], t € (—0,0], g € (0,1] and
{Fn(x,t)}neN is the generating functions for the Q-

Laguerre polynomials which was given in (2.3).

n
If we replace f%) by f(ﬁkfrﬂj in (2.4), then

these operators turns to q-Laguerre type
generalization of Trif’s operators which was
investigated by Ozarslan in [13].

Notice that, since

M. (g, | N+K
L (0,0) = CE _{ K

and

1 (X 0)op :

= n+1 = H

Fa(%0)  (xq"50), 50

then the operators in (1.5) is the special case of
V,(f;q;x,t) for t =0. Also note that, we have

Vi (FiLx,t) = By (f;x,t)

(1- qu) = un,q(x)

To obtain the approximation properties of the
operators V,(f;q;X,t), we need the following

lemmas.
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Lemma 2.1. We have

Fa (X0
Fo(xt)<s—n2l
ﬂ+1( ) (1—aqn+1)
Proof. Since q <1 and (xq""™;q),, > (1-aq"™")
we get
2
ORI e et P A G U LY
n+ > -
XD mo0 (GDRA™ 50Dy

g™, & g - gx]”
(%D mo0 (A (Xq™50) (1= xg" ™)
BN ) PO o) B 4
(1-a0™")(X:Q), m=0 (@D (xa"50),y
_ R
- (l—aq””)'

Lemma 2.2. For all neN, xe[0,a](0<a<]l),
we have

t
Vo (s;05%,t) — x| < %+(q” —1x.

Proof. Using (2.2) in (2.4), we have

Va(s:0;x,0) =

n ©

q (K] Lt
F(xt)kzl[n k] (q)x

{U") tq -1 L<”“>(t q)} x1.(2.5)

|
o
=
ipas

[n+k]

_x =® qk+n+1

Fr(X,t) k= O[n+k+l]

then

Vo (805 %, —x > (q" - Dx. (2.6)
Taking into consideration [n]<[n+k](n,k € Ny)
and 0 < g <1 in (2.5) and using Lemma 2.1, we get
1 Faa (%0
Ry (k.0 @.7)

<x-——8%
[nl(i-ag™*")
From (2.6) and (2.7) the proof is completed.
Lemma 2.3. For all ne N, xe[0,a](0<a<]l),

we have
t|x(1+x) X
s2:q:x,t) — x? s|—+—.
’Vn( q ) ‘ [n](l—an+1) [n]

Proof. From the definition of the operator one can
write

Vo (550 x,t) = il i (k] 2L(“>(t~q)x'<.(2.9)
T RStk

V(5505 %,1) < X —

2.8)

3
Using the recurrence formula (2.2) twice and the
fact that

[K]=[k-1]+g"",
we can prove that

k 2 0 k-1 n
&J+LJ q)am):f%:f%ﬁLkgam)

n+k-1
q U (n+l),.
[n+Kk] bz (60)
+ a
[n+K]
B qn+k[k]t
((n+K1)

L™, (t:q)

LD ;9.

So,

L LS

Fr(X,1) = 2n+k—1]

Vo (52 g x,t) — X2 < L, (6 q)x* — J

2 k-1
q nt LD (£ ) xK

n+k] k-2

L, (6 g)x*

ant ®© qu[k]
Fa(0) i ([n + k1)

LMD (& q)x*

Thus the right member of (2.10) splits naturally
into four parts, which we analysis separately below.
Since 0<qg<1 and {[k],[n]} <[k+n], it is obvious
that

qI'H-k[k] - L

(In+kD> ~ [n]’

We get, using Lemma 2.1,

2n 0 n+k
| g™t & g™k LD gt [t)x __ 11
‘Fn(X,t)kzl([n+k]) [n](l—xq )

and

q2n i qk—l
Fa(X,t) ka[n+K]
In a similar manner,

q AT Xt (2.13)
Fa (X, t)kzz n+Kk]j G0 [n](1 - xq™h)

(n) [ q)x <2 (2.12)
[n]

2nt

Finally, since [k —1]<[n+k —1], we can write
2n

< L . (2.14
F(Xt)kzz[mk] ,Gox —x?<0. (2.14)

.(2.10)



Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp220-224)

4

On the other hand, using the expression
s? —x% = (s—X)* +2x5 - 2%,
we may write

Va (8780 = x* =V (5= %)% 8:%,0)
+2XV,,((s = X); q; X, t).
Thus from (2.11), (2.12), (2.13) and (2.14) we have
(2.8) immediately.
In the proof of these lemmas, we used the similar
technique given by Dogru in [5] (see also [6]).

3 Rate of Convergence

In this section, we will compute the rate of
convergence of V,(f;q;X,t) to f(x)by means of
the classical modulus of continuity.
Let f €C[a,b]. The modulus of continuity of f
denoted by o(f ; 9), is defined as

o(f;8)= sup [f(s)— F(X)|

|s—x|<8
s,xe[a,b]
It is also well known that for any & >0
S—X
|f(s)—f(x)|£oa(f,8)(| 5 |+1J. (3.1

Notice that, we will use the notation || f || instead of

|| f ||C[0 al for abbreviation.

Details for modulus of continuities and smoothness
can be found in [3].

Theorem 3.1. Forall f € C[0,a], we have
Va(f30,0) = | < 20(35,)

where

1

(ca+a’) a . 2

g, = 2T L & " pal .
" ([n](l—aq””)+[n]+(q 2

Proof. Let f eC[0,a]. By linearity and
monotonicity of V,(f;g;x,t) to according to
f (x) and using (3.1), we obtain

Va(f:0:,0) = 0] <Vo( F(s) = FOOLgix.t)

n

<o f ;Bn)Vn(lJr |38_ X| ;q;X,tJ

Cof L1 gl
_ (D(f76n)|:1+ Sn Fn(xst) kz“zl‘[k-}-n] X

By the Cauchy - Schwarz inequality we have

L(k”)(t;q)x"} .

1
Va(fsasx,t) — f(x)| < co(f;sn){nsl(vn((s—x)z;q;x,t»z}

This implies that

Va(f50:.0) - f(.)s(o(f;gn){nsl
" (3.2)

xe[0,a]

1
X sup (Vn((S—X)z;q;x,t))zl-

For each x €[0,a], one can write
Val(s = X%36:0) < Vi (8750 %,0) — |
+ 2XV,, (50X, 1) = X.
So, by Lemma 2.2 and Lemma 2.3 we get
sup V(s =)%56,8) < Vi (873 0:%,0) — |

xe[0,a]
+2a|V, (s;0; %,t) - |
S [t|la(2 +a) S
[n](—ag™") [n]
+(q"-Da

and combining (3.2) with (3.3), the proof is
completed.

(3.3)

Remark 3.2. Since 3, - 0 as n — o, under the
: t .
assumption ﬁ —>0, we obtain a rate of
n

convergence for V,,(f;q;X,t) by Theorem 3.1.
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