
Parallelization of the AES Algorithm

WŁODZIMIERZ BIELECKI, DARIUSZ BURAK
Faculty of Computer Science and Information Systems

Szczecin University of Technology
49 Zolnierska St., PL-71210 Szczecin

POLAND

Abstract: - In this paper we present the parallelization process of the AES algorithm (Rijndael) along with the
description of exploited parallelization tools. The data dependences analysis of loops and appropriate loop
transformations were applied in order to parallelize the sequential algorithm. The OpenMP standard was chosen for
representing the parallelism of the AES algorithm. Speed-up measurements for a parallel program are presented.

Key-Words: - AES, parallelization, data dependences analysis, loop transformation, OpenMP, shared-memory
multiprocessors

1 Introduction
In addition to security level, the cipher speed is the most
important feature of cryptographic algorithms. It is well
known that by the same security level even a little
difference of the cipher speeds may cause the choice of
the faster cipher. Therefore, it is so important and useful
to enable the use of symmetric multiprocessors (SMP)
for running in parallel these algorithms. In this paper we
propose a software approach based on transformations of
a source code written in C representing the sequential
AES algorithm. The design of parallel algorithms is
connected with the current world tendency towards the
hardware implementation of cryptographic algorithms,
because it is often based on parallel algorithms. The
main contribution of this paper is to present the
parallelization process of the AES algorithm along with
the description of exploited parallelization methods and
speed-up measurements. The paper is organized as
follows. In section 2, we briefly review the AES
algorithm. Section 3 contains a brief description of
parallelization tools that were applied. In section 4, we
describe in detail the parallelization process of the AES
algorithm. In section 5, we present experimental results
regarding the application efficiency of a parallel
algorithm.

2 AES Algorithm
Advanced Encryption Standard (AES) is a NIST
cryptographic algorithm standard (FIPS PUB 197). It
uses the Rijndael symmetric block cipher algorithm
developed by Joan Daemon and Vincent Rijmen. The
Rijndael algorithm can operate on block lengths of 128,
192 or 256 bits and key lengths of 128, 192 or 256 bits.
It contains a various number of rounds: 10, 12, and 14
depending on key and block lengths. The Rijndael
algorithm is a substitution-linear transformation cipher

(not requiring a Feistel network) that uses for each round
triple discreet invertible uniform transformations, called
layers: Key Addition Transform, Non-linear Transform
and Linear Mix Transform. Operations in Rijndael are
defined at byte level or in terms of four-byte words.
Encipherment and decipherment processes require the
use of several iterative operations so it underlies parallel
processing.
 To encrypt or decrypt more than one block, there are
five official modes of the AES: ECB, CBC, CFB, OFB
and CTR [1]. The detailed description of the algorithm is
contained in the official Rijndael paper submitted to the
NIST for consideration [2] or in the NIST publication
[3].
 Nowadays, AES is a standard for most government
agencies, and is widely used in many applications due to
such features as: high security level, high speed and
appreciable facilities of software and hardware
implementations.

3 Parallelization Tools
In order to parallelize the AES algorithm we have
applied the Petit program in order to find data
dependences in loops and the OpenMP API to present
parallelized source code.

3.1 OpenMP API
The OpenMP Application Program Interface supports
multi-platform shared memory parallel programming in
C/C++ and Fortran on all architectures including Unix
and Windows NT platforms. OpenMP is a collection of
compiler directives, library routines and environment
variables that can be used to specify shared memory
parallelism. OpenMP directives extend a sequential
programming language with Single Program Multiple

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp224-228)

Data constructs, work-sharing constructs,
synchronization constructs and make possible to operate
with shared data and private data. An OpenMP program
begins execution as a single task called master thread.
When a parallel region is encountered, the master thread
creates a team of threads. The statements within the
parallel region are executed in parallel by each thread in
the team. At the end of the parallel region, the threads of
the team are synchronized. Then again only the master
thread continues execution until the next parallel region
will be encountered. It is necessary to find remedy for all
problems connected with programming restrictions on
parallel processing to build a valid parallel code [4], [5].

3.2 Petit
Developed at the University of Maryland under the
Omega Project and freely available for both DOS and
UNIX systems, Petit is a research tool for analyzing
array data dependences. Petit operates on programs in a
simple Fortran-like language and provides indispensable
information about data dependences that occur in the
analyzing loop [6], [7].

4 Parallelization Process of AES
In order to parallelize the AES algorithm in the ECB
mode, we have used Rafael R. Sevilla’s implementation
of the Rijndael cipher written in C and presented as a
Perl module [8]. This choice makes possible to perform
efficient parallelization in view of some advantageous
features of that source code (a high clarity, enclosing the
most of computations in iterative loops, a little number
of used functions). In order to enable enciphering and
deciphering the whichever number of data blocks, we
have created the new functions, the rijndael_enc() for
the encryption process and the rijndael_dec() for the
decryption process, by analogy with similar functions
included in the C source code of cryptographic
algorithms (the des_enc(), the des_dec(), the loki_enc(),
the loki_dec, the idea_enc(), the idea_dec(), etc.)
presented in [9].
 In the next subsection, we introduce data
dependences types before we begin discuss the
parallelization process of the AES algorithm.

4.1 Data Dependences
There are the following types of data dependences that
occur in iterative loops [10], [11]:
• Data Flow Dependence- indicates that write-before-

read ordering that must be satisfied for parallel
computing. The following loop yields such
dependeces:

 for (int i=0; i<n; i++)
 a[i] = a[i-1];
• Data Antidependence indicates that read-before-

write ordering should not be violated when
performing computations in parallel. The loop
bellow produces such dependeces:

 for (int i=0; i<n; i++)
 a[i] = a[i+1];
• Output Dependence indicates a write-before-write

ordering. The following loop produces such
dependeces:

 for(int i=0; i<n; i++)
 a[0] = a[i];

 All of the above loops cannot be executed in parallel
in such a form, because results generated by parallel
loops would be not the same as those yielded with the
sequential loops. Thus, it is necessary to transform these
loops so as to eliminate Data Antidependences and
Output Dependences (Data Flow Dependences cannot
be avoided and limit parallelism).

4.2 Parallelization strategy
The data input of the parallelization process is the well-
optimized sequential AES algorithm [8].
 The process of the AES algorithm parallelization can
be divided into the following stages:
a) finding the most time-consuming functions of the

AES algorithm;
b) making preliminary transformations of the most

time-consuming loops;
c) data dependences analysis of the most time-

consuming loops;
d) removal of data dependences (when possible);
e) constructing parallel loops in accordance with the

OpenMP API;
f) verification of a parallelized source code.
 The result of the parallelization process is a
parallelized AES algorithm.

4.3 The most time-consuming functions
We have carried out experiments with the sequential
AES algorithm that encrypts and then decrypts 10
megabytes plaintext in order to find the most time-
consuming functions including no I/O functions. We
have discovered that such functions are the
rijndael_enc() and the rijndael_dec() functions presented
bellow:

4.3.1 The rijndael-enc() function
void rijndael_enc(RIJNDAEL_context *ctx,

 UINT8 *input, int inputlen, UINT8 *output)
{

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp224-228)

 int i, nblocks;
 nblocks = inputlen / RIJNDAEL_BLOCKSIZE;
 for (i = 0; i<nblocks; i++) {

rijndael_encrypt(ctx, input, output);
input+= RIJNDAEL_BLOCKSIZE;
output+= RIJNDAEL_BLOCKSIZE;

 }
}

4.3.2 The rijndael-dec() function
void rijndael_dec(RIJNDAEL_context *ctx,

 UINT8 *input, int inputlen, UINT8 *output)
{
 int i, nblocks;
 nblocks = inputlen / RIJNDAEL_BLOCKSIZE;
 for (i = 0; i<nblocks; i++) {

rijndael_decrypt(ctx, input, output);
input+= RIJNDAEL_BLOCKSIZE;
output+= RIJNDAEL_BLOCKSIZE;

 }
}

4.4 Parallelization process of the most time-

consuming loops
The most time-consuming loops are included in the
rijndael_enc() and the rijndael_dec() functions, thus their
parallelization is critical for reducing the total time of the
parallel algorithm execution. Taking into account the
strong similarity of these loops (there is the only
difference between them: the loop included in the
rijndael_enc() function calls out the rijndael_encrypt()
function, the second one calls out the rijndael_decrypt()
function; the rijndael_encrypt() and the
rijndael_decrypt() functions are very similar), we discuss
only the parallelization process of the 4.3.1 loop
(however, this analysis is valid also in the case of the
4.3.2 loop).
 In order to apply the data dependences analysis of the
4.3.1 loop we have to put the body of the
rijndael_encrypt() function in this loop.
 Next, we have to remove existing data dependences
by making the following transformations:
a) insert in the beginning of the loop body the

following two statements:
“plaintext = &input[RIJNDAEL_BLOCKSIZE*i];”
“ciphertext=&output[RIJNDAEL_BLOCKSIZE*i];”

b) remove from the end of the loop body the following
two statements:
“input+= RIJNDAEL_BLOCKSIZE;”
“output+= RIJNDAEL_BLOCKSIZE;”

c) make the privatization of the following eight
variables:
“i”, “plaintext”, “ciphertext”, “r”, “j”, “t”, “e”,
“wtxt”.

 The source code of the loop transformed in
accordance with the above markings is suitable to apply
the following OpenMP API constructs: parallel region
construct (“parallel” directive) and work-sharing
construct (“for” directive). This permits us to represent
the parallelization of the analyzed loop.
 The rijndael_enc() function with the parallelized
most time-consuming loop has the following form (in
accordance with the OpenMP API):

void
rijndael_enc(RIJNDAEL_context *ctx,

 UINT8 *input, int inputlen, UINT8 *output)
{
 int i, nblocks;
 const UINT8 *plaintext;
 UINT8 *ciphertext;
 int r, j;
 UINT32 wtxt[4], t[4], e;
 nblocks = inputlen / RIJNDAEL_BLOCKSIZE;
#pragma omp parallel private (i, plaintext, ciphertext , r,

j, t, e, wtxt)
#pragma omp for
for (i = 0; i<nblocks; i++) {
 plaintext=&input[RIJNDAEL_BLOCKSIZE*i];
 ciphertext = &output[RIJNDAEL_BLOCKSIZE*i];
key_addition_8to32(plaintext, &(ctx->keys[0]), wtxt);
 for (r=1; r<ctx->nrounds; r++) {
 for (j=0; j<4; j++) {
 t[j] = dtbl[wtxt[j] & 0xff] ^

ROTRBYTE(dtbl[(wtxt[idx[1][j]] >> 8) & 0xff]^
ROTRBYTE(dtbl[(wtxt[idx[2][j]] >> 16) & 0xff] ^
ROTRBYTE(dtbl[(wtxt[idx[3][j]] >> 24) & 0xff])));
 }
key_addition32(t, &(ctx->keys[r*4]), wtxt);
 }
for (j=0; j<4; j++) {
 e = wtxt[j] & 0xff;
 e |= (wtxt[idx[1][j]]) & (0xff << 8);
 e |= (wtxt[idx[2][j]]) & (0xff << 16);
 e |= (wtxt[idx[3][j]]) & (0xff << 24);
 t[j] = e;
 }
for (j=0; j<4; j++)
 t[j] = SUBBYTE(t[j], sbox);
key_addition32to8(t,&(ctx->keys[4*ctx->nrounds]),

ciphertext);
 }
}
 where “#pragma omp parallel” defines the beginning
of the parallel region, and “#pragma omp for” specifies
that all the iterations of the associated loop can be
executed in parallel.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp224-228)

5 Speed-up Measurements
In order to study the efficiency of the parallel code, we
used the computer with the following features:
- 64 x Itanium2 1.5GHz (SGI Altix 3700) (we use up to
sixteen processors for the program execution),
- the Intel® C++ Compiler ver.9.0 (that supports the
OpenMP 2.5 API).
 The results received for the block length of 128 bits,
the key length of 256 bits and the plaintext of the size
about 17 megabytes are shown in Table 1.

 Speed-up No. of
processors

No. of
threads Encryption Decryption Total

 1 1 1,000 1,000 1,000
 2 2 1,957 1,996 1,600
 4 4 3,112 3,285 1,941
 8 8 5,274 6,829 2,222
 16 16 5,554 12,357 2,300

Table 1- Speed-up measurements of the AES algorithm

 In order to verify the measurements that were
performed, we used several plaintext sizes from
1 kilobytes to 20 megabytes and the speed-ups were very
similar for all the cases.
 The total running time of the AES algorithm consists
of the following time-consuming operations:
a) data reading from an input file;
b) data encryption;
c) data decryption;
d) data writing to an output file (both encrypted and

decrypted text).
 The total speed-up of the parallelized AES algorithm
depends considerably on the two major factors: whether
the most time-consuming loops are parallelizable and
the method of data reading and data writing.
 The results confirm that the parallelized codes of the
most time-consuming loops (placed in the rijndael_enc()
and the rijndael_dec() functions) have sufficient
efficiencies.
 The block method of reading data from an input file
and writing data to an output file was used. The
following C language functions and block sizes were
applied: the fread() function and the 16-bytes block for
data reading and the fwrite() function and the 512-bytes
block for data writing. The optimal sizes of the blocks
were chosen via the appropriate number of tests with
various block sizes.
 In accordance with Amdahl’s Law the maximum
speed-up of the whole AES algorithm is limited to 4.10,
because the fraction of the code that cannot be
parallelized is 0.244. This fraction is calculated as the
quotient of the sum of the execution time of all

unparallelizable operations divided by the execution
time of the whole algorithm.
 The difference between the speed-ups obtained for
the encryption and the decryption processes and for eight
and sixteen processors is due to the fact that during the
decryption process (which is executed after the
encryption process) data is stored in local memory.

6 Conclusions
In this paper, we describe the parallelization of the AES
algorithm. The AES algorithm was divided into
parallelizable and unparallelizable parts. We have shown
that the iterative loops included in the most time-
consuming functions (responsible for the data blocks
encryption and decryption) are fully parallelizable. In
order to parallelize these loops it is necessary to make
appropriate transformations of the body loops (described
in the section 4.4) and to use the variable privatization
technique.
 The experiments carried out on the SGI computer
with one, two, four, eight and sixteen threads show that
the application of the parallel AES algorithm
considerably boost the time of the data encryption and
decryption. We believe that the speed-ups received for
the most time-consuming loops are satisfactory. The rest
of the time-consuming parts of code, contains I/O
functions that are unparallelizable because the access to
memory is, by its very nature, sequential. Hence, the
total speed-up is less than that for the parallelizable part.
The parallel AES algorithm presented in this paper can
be also helpful for hardware implementations. The
hardware synthesis of the AES algorithm will depend on
the appropriate adjustment of the data transmission
capacity and the computational power of hardware.

References:
[1] Dworkin, M., Recommendation for Block Cipher

Modes of Operation: Methods and Techniques, NIST
Special Publication 800-38A,December 2001

[2] Daemen, J. and Rijmen, V., AES Proposal: Rijndael,
AES submission document on Rijndael, Version 2,
September 1999

[3] FIPS PUB 197, Advanced Encryption Standard
(AES), National Institute of Standards and
Technology, U.S. Department of Commerce,
November 2001

[4] OpenMP Application Program Interface, Version
2.5, May 2005

[5] http://www.openmp.org
[6]Kelly,W.,Maslov,V.,Pugh,W.,Rosser,E.,Speisman,T.,

Wonnacott,D., New User Interface for Petit and
Others Extensions.User Guide, December 1996

[7] http://www.cs.umd.edu/projects/omega/

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp224-228)

[8] http://www.iaik.tu-graz.ac.at/research/krypto/AES/
old/~rijmen/rijndael/

[9] Schneier, B., Applied Cryptography: Protocols,
Algorithms, and Source Code in C, Second Edition,
John Wiley & Sons, 1995.

[10] Allen,R., Kennedy, K., Optimizing compilers for
modern architectures: A Dependence-based
Approach, Morgan Kaufmann Publishers, Inc., 2001

[11] Moldovan, D.I., Parallel Processing. From
Applications to Systems, Morgan Kaufmann
Publishers, Inc., 1993.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp224-228)

