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Abstract: – An on-line bushing condition monitoring framework is presented, the framework is able to 

adapt as new data are introduced. Furthermore, it can accommodate new classes that are introduced by 

incoming data. The framework is implemented using an incremental learning algorithm that uses MLP 

as a weak Learner.  The performance of the on-line bushing condition monitoring is compared to that 

of an MLP trained off-line. The proposed framework is able to adapt as new data are introduced and is 

able to accommodate new classes. The testing results improved from 67.5% to 95.8% as new data are 

introduced and the testing results improved from 60% to 95.3% as new classes are introduced. On 

average the confidence value of the framework on its decisions is 0.92. 
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1 Introduction  
Bushings are critical components in transmission and 

distribution of electricity. The reliability of the 

bushings not only affects the electric availability of 

the supplied area but also the economical operation of 

a utility.  Various diagnostics tools have been used to 

detect bushings and transformer failures.  These 

include techniques such as on-line partial discharge 

(PD) analysis, on-line power factor, infrared 

scanning, temperature monitoring, vibration 

monitoring and chemical techniques [1]. However, 

few of these methods can in isolation provide all of 

the information that a transformer operator requires to 

diagnose failures. Among chemical techniques, 

dissolve gas analysis (DGA) has gained worldwide 

recognition as a diagnostic method for detecting 

incipient faults [3][4]. Artificial neural networks 

(ANN) have been used in the past for bushing and 

transformer condition monitoring [4][5][6][7] but the 

main shortcomings of the methods proposed to date is 

that they do not take into account the on-line 

implementation requirement. As a consequence of 

this shortcoming, the paper proposes a new method 

for interpreting bushing data from the DGA test using 

multi-layer perceptrons (MLP) with on-line learning 

capability.  The basis of many artificial intelligence 

based methods for bushing diagnosis relies heavily on 

adequate and representative set of training. It is also 

often common that the training data becomes 

available only in small batches and that some new 

classes only appear in subsequent data collection 

stage. Hence, there is a need to update the classifier in 

an incremental fashion without compromising on the 

classification performance of previous data. In this 

paper, an on-line learning that uses an incremental 

learning algorithm using MLP neural network is 

proposed for bushing condition monitoring.   

 

2 Background 
This section gives background on dissolve gas 

analysis, artificial neural networks and incremental 

learning algorithms. 

 

2.1 Dissolve gas analysis 
Dissolve gas analysis is the most commonly used 

diagnostic technique for transformers and bushings 

[3]. DGA is used to detect oil breakdown, moisture 

presence and PD activity.  Fault gases are produced 

by degradation of transformer and bushing oil and 

solid insulation such as paper and pressboard, which 

are all made of cellulose [3][8].  The gases produced 

from the transformer and bushing operation are 

divided into three groups and these are: hydrocarbons 

gases group, which are methane (CH4), ethane (C2H6), 

ethylene (C2H4), acetylene (C2H2) and hydrogen (H2); 

the carbon oxide group, which includes carbon 

monoxide (CO) and carbon dioxide (CO2); and the 

non-fault gases, which are nitrogen (N2) and oxygen 

(O2).  The nature of faults is classified into two main 

groups and these are discharges and thermal heating. 

Partial discharge faults are divided into high-energy 
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discharge and low energy discharge. The high-energy 

discharge is known as arcing and low energy 

discharge is referred to as corona.  The quantity and 

types of gases reflect the nature and extent of the 

stressed mechanism in the bushing [3]. Oil 

breakdown is shown by the presence of hydrogen, 

methane, ethane, ethylene and acetylene. High levels 

of hydrogen show that the degeneration is due to 

corona. High levels of acetylene occur in the presence 

of arcing at high temperature.  Methane and ethane 

are produced from low temperature thermal heating of 

oil and high temperature thermal heating produces 

ethylene, hydrogen as well as a methane and ethane.  

Low temperature thermal degradation of cellulose 

produces CO2 and high temperature produces CO.  

 
2.2 Artificial neural networks 

Artificial neural networks are data processing system 

that learns complex input-output relationships from 

data. A typical ANN consists of simple processing 

elements called neurons that are highly 

interconnected in an architecture that is loosely based 

on the structure of biological neurons in human brain. 

There are different types of ANN models; two that are 

commonly used are MLP network and radial basis 

function (RBF) network. However, only MLP are 

implemented in this paper because they have been 

successfully applied to various condition monitoring 

applications [4][5]. Fig. 1 shows the architecture of an 

MLP with four neurons in the input layer, three 

neurons in the hidden layer and two neurons in the 

output layer. 

 
Fig. 1. Architecture of an MLP 

 

Fig.1 shows the relationship between input (x) and 

output (y), which can be written as [9] 
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2.3 Incremental learning  
An incremental learning algorithm is defined as an 

algorithm that learns new information from unseen 

data, without necessitating access to previously used 

data [10]. The algorithm must also be able to learn 

new information from new data and still retains 

knowledge from the original data. Lastly, the 

algorithm must be able to learn new classes that may 

be introduced by new data. This type of learning 

algorithm is sometimes referred to as a ‘memoryless’ 

on-line learning algorithm. Learning new information 

without requiring access to previously used data, 

however, raises ‘stability-plasticity dilemma’ [11]. 

This dilemma indicates that a completely stable 

classifier maintains the knowledge from previously 

seen data, but fails to adjust in order to learn new 

information, while a completely plastic classifier is 

capable of learning new data but lose prior knowledge 

[12]. The problem with MLP is that it is a stable 

classifier and is not able to learn new information 

after it has been trained 

Different procedures have been implemented for 

incremental learning. One procedure of learning new 

information from additional data involves discarding 

the existing classifier and training a new classifier 

using accumulated data [13][14].  Other methods such 

as pruning of networks or controlled modification of 

classifier weight or growing of classifier architectures 

are referred to as incremental learning algorithm.  

This involves modifying the weights of the classifier 

using the misclassified instances only.  The above 

algorithms are capable of learning new information, 

however, they suffer from ‘catastrophic forgetting’ 

and require access to old data [15][16].  One approach 

evaluates the current performance of the classifier 

architecture. If the present architecture does not 

sufficiently represent the decision boundaries being 

learned, new decision clusters are generated in 

response to new pattern. Furthermore, this approach 

does not require access to old data and can 

accommodate new classes. However, the main 

shortcomings of this approach are: cluster 

proliferation and extreme sensitivity to selection of 

algorithm parameters [17]. In this paper, Learn++ is 

implemented for on-line learning of bushing 
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condition monitoring. The Learn++ algorithm is 

summarized in the next section. 

 

3 Learn++  

Learn++ is an incremental learning algorithm that 

uses an ensemble of classifiers that are combined 

using weighted majority voting [11]. Learn++ was 

developed by Polikar [11] and was inspired by a 

boosting algorithm called adaptive boosting 

(AdaBoost). Each classifier is trained using a training 

subset that is drawn according to a distribution. The 

classifiers are trained using a weak Learn algorithm.  

The requirement for the weak Learn algorithm is that 

it must be able to give a classification rate of less than 

50% initially [12]. For each database Dk that contains 

training sequence, S, where S contains learning 

examples and their corresponding classes, Learn++ 

starts by initializing the weights, w, according to the 

distribution DT, where T is the number of hypothesis.  

Initially the weights are initialized to be uniform, 

which gives equal probability for all instances to be 

selected to the first training subset and the distribution 

is given by 

m
D 1=         (2) 

where m represents the number of training examples 

in Sk. The training data are then divided into training 

subset TR and testing subset TE to ensure weak Learn 

capability.  The distribution is then used to select the 

training subset TR and testing subset TE from Sk.  After 

the training and testing subset have been selected, the 

weak Learn algorithm is implemented. The weak 

Learner is trained using subset, TR.  A hypothesis, ht, 

obtained from weak Learner is tested using both the 

training and testing subsets to obtain an error, εt: 
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If the error is greater than 0.5, the hypothesis is 

discarded and new training and testing subsets are 

selected according to DT and another hypothesis is 

computed. All classifiers generated so far, are 

combined using weighted majority voting to obtain 

composite hypothesis, Ht 
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Weighted majority voting gives higher voting weights 

to a hypothesis that performs well on the training and 

testing subsets. The error of the composite hypothesis 

is computed as in (3) and is given by 
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If the error is greater than 0.5, the current hypothesis 

is discarded and the new training and testing data are 

selected according to the distribution DT. Otherwise, if 

the error is less than 0.5, the normalized error of the 

composite hypothesis is computed as: 
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The error is used in the distribution update rule, 

where the weights of the correctly classified instances 

are reduced, consequently increasing the weights of 

the misclassified instances. This ensures that 

instances that were misclassified by the current 

hypothesis have a higher probability of being selected 

for the subsequent training set.  The distribution 

update rule is given by 
|])([|1

1 )( iit yxH

ttt Biww
≠−

+ ×=      (8) 

Once the T hypothesis is created for each database, 

the final hypothesis is computed by combining the 

hypothesis using weighted majority voting given by 
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3.1 Confidence measurement    
A simple procedure is used to determine the 

confidence of the algorithm on its own decision. A 

vast majority of hypothesis agreeing on a given 

instances can be interpreted as an algorithm having 

confidence in its own decision. Let us assume that a 

total of T hypothesis are generated in k training 

session for a C-class problem. For any given example, 

the final classification is class, if the total vote class c 

receives 
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where ψt denotes the voting weights of the t
th,

 

hypothesis ht.   Normalizing the votes received by each 

class gives  

∑
=

= C

c

c

c
c

1

ξ

ξγ                          (11) 

γc can be interpreted as a measure of confidence on a 

scale of 0 to 1. A high value of γc show high 
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confidence in the decision and consequently, a low 

value of γc show low confidence in the decision. It 

should be noted that the γc value does not represent 

the accuracy of the results but the confidence of the 

system on its own decision. 

 The classification rate is also used to measure the 

performance of the proposed framework and is 

defined simply as the rate of the incorrectly classified 

instances to the correctly classified instances.  

 

4 Bushing condition monitoring 

framework  

The proposed method for fault diagnosis is a two-

stage implementation. The first stage of the diagnosis 

identifies if the bushing is faulty or not. If the bushing 

is faulty, the second phase determines the types of 

faults, which are thermal fault, PD faults and faults 

caused by unknown source. Generally, the procedure 

of fault diagnosis includes three steps, extracting 

feature and data pre-processing, training the 

classifiers and identifying transformer fault with the 

trained classifiers. Fig.2 shows the block diagram of 

the proposed methodology. 

 

Feature 
Extracting and
 Pre-processing

Classifier
Is bushing 

Faulty?

 Classifier

What Type 
of fault?  

Yes

No

Thermal
Fault

Partial Discharge
Fault

Unknown
Fault

Normal 
Operation

 
Fig.2. Block diagram of the proposed methodology 

 

4.1 Data Preprocessing    

DGA is used to determine the faulty gases in the 

bushing oil. The content information reflects the 

states of the transformer and bushing. Ten diagnostic 

gases mentioned in Section 2 are extracted, which are 

CH4, C2H6, C2H4, C2H2, H2, CO, CO2, N2, O2 and total 

dissolved combustible gases. The total dissolved 

combustible gas is given by the sum of methane, 

hydrogen, acetylene, ethane, ethylene and hydrogen.  

The faulty gases are analysed using the IEEE C57.104 

standards [7]. Data pre-processing is an integral part 

of neural network architecture. Data pre-processing 

makes it easier for the network to learn.  Data are 

normalized to fall within 0 and 1, using linear 

normalization.  

 

4.2 MLP classifier 
When implementing the MLP, the choice of 

architecture is an important design decision as it 

determines the generalisation capability of the 

network. In selecting the architecture, issues such as 

model complexity and over-fitting have to be taken 

into consideration. An MLP with two layers is 

implemented in this paper as previous work on 

optimal number of hidden layer has shown that a 

sufficiently large network with one hidden layer of 

neurons is able to approximate any function with 

arbitrary accuracy [18]. The optimal number of 

hidden layer can be found by using exhaustive search. 

MLP is trained using the scaled conjugate gradient 

training method. Cross-validation is used to ensure 

that a network with good generalization property is 

achieved. In this paper MLP is trained using batch 

learning.  Batch learning implies that all available 

data are used to train an MLP and that the network 

does not have incremental capability.   Additionally, 

the MLP is used as a weak Learner in the Learn++ 

algorithm.  

 

5 Experimental results 
The first experiment evaluate the incremental 

capability of the algorithm is tested using first 

phase, which is to determine whether the bushing 

is faulty or not. The data used was collected from 

bushing over a period of 2.5 years of bushings in 

services. The algorithm is implemented with 1500 

training examples and 4000 validation examples. The 

training data were divided into five databases each 

with 300 training instances. In each training session, 

Learn++ is provided with each database and generates 

20 hypotheses. The weak Learner uses an MLP with 

10 input layer neurons, 5 hidden layer neurons and 

one output layer neuron. To ensure that the method 

retains previously seen data, for each training session, 

the previous database is tested. 

The first row of Table 1 shows the performance of 

the Learn++ on the training data for different 

databases. On average weak Learner gives 60% 

classification rate on its training dataset, which 

improves to 98% when the hypotheses are combined. 
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This demonstrates the performance improvement of 

Learn++ as inherited from AdaBoost on a single 

database.  Fig. 2 shows the performance of Learn++ 

on training dataset against the number of classifiers 

for a single database.   

Each column thereafter shows the performance of 

current and previous databases and this is to show that 

Learn++ does not forget previously learned 

information, when new data are introduced.  The last 

row of Table 1 shows the classifiers performances on 

the testing dataset, which gradually improved from 

65.7% to 95.8% as new databases become available 

thereby demonstrating incremental learning capability 

of Learn++.  Fig. 4 shows the performance of 

Learn++ on one data set against the number of 

datasets. Table 2 shows that the confidence of 

framework increases as new data are introduced. 

 

Table 1: Performance of Learn++ for first stage on-

line bushing condition monitoring. Key: S = data 

Dataset S1 S2 S3 S4 S5 

S1  89.5 85.8 83.00 86.9 85.3 

S2   ─ 91.4 94.2 93.7 92.9 

S3  ─  ─ 93.2 90.1 91.4 

S4  ─  ─  ─ 92.2 94.5 

S5  ─  ─  ─  ─ 98.0 

Testing (%)   65.7 79.0 85.0 93.5 95.8 
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Fig.3. Performance of Learn++ on training dataset 

against the number of hypothesis 
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Fig.4. Performance of Learn++ on testing data against 

the number of databases 

 

Table 2: The confidence of the algorithm for 

classified cases for all databases and for each class. 

  S1 S2 S3 S4 S5 

Classified:  

Normal Class 

Faulty Class 

 

0.66 

0.49 

 

0.85 

0.64 

 

0.92 

0.81 

 

0.94 

0.90 

 

0.94 

0.90 

 

The second experiment was performed to evaluate 

whether the MLP can accommodate new classes.  The 

faulty data were divided into 1000 training examples 

and 2000 validation data, which contain all the three 

classes. The training data were divided into five 

databases, each with 200 training instances. The first 

and second databases contain training examples of PD 

and thermal faults. The data of unknown fault is 

introduced in the third training session. In each 

training session, Learn++ is provided with each 

database and generates 20 hypotheses. The last row of 

Table 3 shows that the classifiers performances 

increases from 60% to 95.3% as new classes are 

introduced in the subsequent training dataset.    

 

Table 3: Performance of Learn++ for second stage 

bushing condition-monitoring key: S = databases 

Dataset S1 S2 S3 S4 S5 

S1  95.0 95.2 94.6 95.7 95.1 

S2  ─ 96.3 96.0  96.8 95.3 

S3 ─ ─ 97.0 96.4 96.5 

S4 ─ ─ ─ 97.8 96.8 

S5 ─ ─ ─ ─ 99.2 

Testing (%)   60.0 65.2 76.0 83.0 95.3 

 

The last experiment addressed the problem of 

bushing condition monitoring using MLP 

network trained using batch learning. This was 

done to compare the classification rate of 

Learn++ with that of an MLP. An MLP with the 

same set of training example as Learn++ was trained 

and the trained MLP was tested with the same 

validation data as Learn++. This was done for the first 

stage, which is a two-class and second stage, which is 

a three-class problem.  The first phase MLP gave 

classification rate of 97.2%, whereas the second phase 

MLP gave a classification rate of 96.0%. 

 

6 Discussion and conclusions 
Current bushing condition monitoring techniques 

provide promising results but lack the 
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incremental capability if they are to be used for 

automatic and continuous on-line monitoring. In 

this paper, a method for on-line learning that uses 

incremental learning is implemented for on-line 

bushing condition monitoring. The proposed on-

line bushing condition monitoring framework 

consists of two stages.  The first stage determines 

if the bushing is faulty or not and the second 

stage determines the nature of the fault. 
Experimental results demonstrate that the proposed 

framework has incremental learning capability. 

Furthermore, these results show that the framework is 

able to accommodate new classes introduced by 

incoming data. The results further show that the 

algorithm has a high confidence in its own decision 

and this confidence increases as additional data are 

introduced. 
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