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Abstract – Electric motors play an important role in consumer and manufacturing industries. Among all 

different kinds of electric motors, Interior Permanent Magnet Synchronous Motors (IPMSM) have a special 

place. That is because of their high torque to current ratio, large power to weight ratio, high efficiency, high 

power factor and robustness. In this paper a radial basis function (RBF) neural network based on sliding mode 

controller (SMC) is presented to control IPMSM. A RBF neural network is formulated as a controller whose 

parameters must be updated. To guarantee the robustness of the closed-loop system, a modified SMC 

methodology is designed to derive an adaptation law for the parameters of neural network controller. The 

weights of the neural network can be adaptively adjusted for the compensation of uncertain dynamics and the 

tracking error between the plant output and the model output can be guaranteed to converge to zero in a finite 

time. The effectiveness of the proposed control system is verified by some simulations results. Obtained results 

show the response time is also very fast despite the fact that the control strategy is based on bounded rationality.  
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1 Introduction 
 

The advances in power semiconductor technology, digital 

electronics, magnetic materials and control theory have 

enabled modern ac motor drives to face challenging high 

efficiency and high performance requirements in the 

industrial sector. Among ac drives, the permanent magnet 

synchronous motor has been gaining popularity owing to its 

high torque to current ratio, large power to weight ratio, high 

efficiency, high power factor and robustness. These features 

are due to the incorporation of high energy rare-earth alloys 

such as Neodymium-Iron-Boron in its construction. 

Especially, the interior permanent magnet synchronous 

motor (IPMSM) which has magnets buried in the rotor core 

exhibit certain good properties, such as, mechanically robust 

rotor construction, a rotor non-saliency and low effective air 

gap. The rotors of these machines have a complex geometry 

to ensure optimal use of the expensive permanent magnet 

material while maintaining a high magnetic field in the air 

gap. These features allow the IPMSM drive to be operated 

in high-speed mode by the field weakening. Usually high 

performance motor drives require fast and accurate 

response, quick recovery from any disturbances and 

insensitivity to parameter variations. The dynamic behavior 

of an ac motor can be significantly improved using vector 

control theory where motor variables are transformed into 

an orthogonal set of d-q axes such that speed and torque can 

be controlled separately [1]. This gives the IPMSM machine 

the highly desirable dynamic performance capabilities of the 

separately excited dc machine, while retaining the general 

advantages of the ac over dc motors. Originally, vector 

control was applied to the induction motor and a vast 

amount of research work has been devoted to this area. The 

vector control method is relevant to IPMSM drive as the 

control is completely carried out through the stator as the 

rotor excitation control is not possible. However, precise 

speed control of an IPMSM drive becomes a complex issue 

owing to nonlinear coupling among its winding currents and 

the rotor speed as well as the nonlinearity present in the 

torque equation. The system nonlinearity becomes severe if 

the IPMSM drive operates in the field weakening region 

where the direct axis current 0≠di . This results in the 

appearance of a non-linear term, which would have 

vanished under the existing vector control scheme 

with 0=di . There have been significant developments in 

nonlinear control theory applicable to electric motor drives. 

Interestingly, the d-q transformation applicable to ac motors 

can be considered as a feedback linearization 

transformation. However, with the recent developments in 

nonlinear control theories, a modern control engineer has 

not only found a systematic approach in dealing with 

nonlinearities but has managed to develop approaches, 

which had not been considered previously. The surges of 

such nonlinear control methods applicable to 

electromechanical systems include variable structure 

systems [2], differential geometric approach [3], [4] and 

passivity theory [5]. However, most of these controllers are 

complex to implement or take a lot of cost, so it is important 

problem to design controller that require least cost with 

good performance. This paper focuses on solving these 

complex control problems via an innovative approach: use 
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of RBF based on Sliding mode control. This paper is 

organized as follows. Firstly, the IPMSM drive model in the 

d-q reference frame is presented in Section 2. Then in 

Section 3 the structure of proposed radial basis function 

(RBF) neural network based on sliding mode controller 

(SMC) is presented. The block diagram of control system 

and its blocks are described in Section 4 and simulation 

results are presented in Section 5. Finally, the conclusion is 

presented in Section 6. 

 

2. The IPMSM Model  
 

The mathematical model of an IPMSM drive can be 

described by the following equations in a synchronously 

rotating rotor d-q reference frame as [6]: 
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It is well known that a synchronous motor is unable to 

self-start when supplied with a constant frequency source. 

The starting torque in the IPMSM drive used in our research 

is provided by a rotor squirrel cage winding. The starting 

process of the IPMSM drive can be considered as a 

superposition of two operating modes, namely, unsymmetric 

asynchronous motor mode and magnet-excited synchronous 

generator mode [7]. Therefore, the effects of shorted rotor 

windings have to be considered, if one wants to examine the 

process of run-up to the synchronization. However, the 

model equations in (1) to (3) do not describe the 

asynchronous behavior of the IPMSM drive. The IPMSM 

drives constructed using Neodymium-Iron-Boron magnets 

can be operated over a wide temperature orange [8]. It has 

been shown that, within normal operating temperature range, 

the residual flux density and intrinsic coercivity will 

decrease as the temperature is increased. However, this is 

considered as a reversible process as the temperature comes 

down to normal value, the flux density and coercivity will 

return to their original values. This variation in residual flux 

along with the stator resistance, in turn affects the dynamic 

behavior of the motor controller. The standard linear d-q axis 

IPMSM model with constant parameters will lead to an 

unsatisfactory prediction of the performance of a 

permanent-magnet motor owing to the extraordinary 

saturation of these machines during normal operation. It has 

been shown that improved prediction of IPMSM behavior 

can be accomplished by adjusting the model parameters 

according to the changing saturating conditions [9]. Various 

researchers have proved that here exists variations in Xd, Xq 

, and fΨ  with the direct and quadratic axis saturation as 

well as with the direction of rotation [7,9]. In light of these 

findings we propose to use BELBIC controller wherein this 

controller response all of this variation in system. The 

objective of this paper is to obtain the IPMSM control 

voltages in order to achieve high performance speed 

tracking. According to the motor model given in equations 

(1-3) of section II, it can be seen that the speed control can be 

achieved by controlling the q-axis component qv  of the 

supply voltage as long as the d-axis current di  is maintained 

at zero. This results in the electromagnetic torque being 

directly proportional to the current qi . Since 0=di , the 

d-axis flux linkage depends only on the rotor permanent 

magnets. The resultant IPMSM model can be represented as, 
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3. Proposed Controller Formation 
 

Consider the following single-input single-output 

nonlinear dynamical system: 
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u  and y  represent the control input and the system is output 

respectively, and (.)f  is a multi-input single-output nonlinear 

function. We assume that  
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Where )(tr  is the desired system output whose thn  derivative 

is assumed to exit. We can define error vector )(tE  as: 
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To track the desired output, a radial basis function neural 

network (RBFNN) controller in the form of: 

))(()()(
1

1

tEtwEu i

N

i

i

h

φ∑
+

=

=  (12) 

 

Is used as the controller where 

1))t(E(

N,...,2,1i           ),
c)t(E

())t(E(

1N

h
i

i
ii

h
=φ

=
σ

−
φ=φ

+

 (13) 

 

and )(tE  is the input of radial basis function, 
hN  is the 

number of radial basis functions (i.e., the number of hidden 
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neurons), ic  is the center of the ith radial basis function 

ii σϕ (.),  is proportional to the effective radius of the ith basis 

function and 
iw  is the connection weight between the hidden 

neuron i and the output layer. There is no connection weight 

between the input layer and the hidden layer. Typically, (.)iφ  

is a Gaussian function in the form of:  
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Re-writing Equation (5) in vector form yields: 
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The overall system with the controller is shown in Figure 1. 
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Fig.1. Structure of the control system 

 

 

 

Without loss of generality, we impose the following 

constraints to the neural network controller [10]:  
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3. Sliding Mode-Based Adaptation Law for 

RBFNN Controller 

In this section we will present an update law for the controller 

parameters using the sliding mode and then we will show the 

stability of the resulting control law by Lyapunov theorem. 

Consider a sliding surface in the form of: 
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In addition, according to equation (8), we can re-write the 

sliding surface in equation (19) as a following form: 
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For the system given in Equation (8) with radial basis 

function neural network controller given in (12), let: 
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The constant parameters α  and γ  are chosen such that 

10,0 <<> γα  and k  is a sufficiently large constant 

satisfying: 

γ
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k
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Then, the adaptation mechanism defined in (22) enforces the 

controller parameters )(twi
to the values that lead the states 

of the system to the sliding surface defined in (18) by driving 

an arbitrary initial values of s(t) to zeros. 

Proof: Consider following preliminaries. From Equation 

(24), we have: 
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Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp46-51)



 

With respect to (21) the derivative of s(t) is written as follow: 
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Also, form (13) we have: 
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At last, rewriting Equation (22) we get: 
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Fig. 2. The Control system structure 

 

 

Multiplying both sides by )(tΦ  follows that: 
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Dividing both sides by )()( ttT ΦΦ  yields: 
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Now, Consider a Lyapunov function candidate of the form: 
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Using Equation (20), the derivative of ))(( tsV  with respect to 

time is given by:  
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Substituting the derivative of Equation (8) into above 

equation yields: 
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Using Equations (24) and (27) and inequality (2), (9), and (10), 

we have:  
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Finally, applying Equation (19) and using Equation (18), we 

get: 
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Therefore, the controlled trajectory of the error 

asymptotically converges to zero. In adjusting the parameter 

of neural network, we must have 
u

f
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∂
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when the system is unknown, we must model the function f 

off-line using another neural network and use 
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 respectively where f̂  is the neural 

network model of the function f . 

 

4. The Block Diagram of the Control System 
The control method for the IPMSM is chosen based on some 

parameters including: usage, performance and speed range. 
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Figure2 shows the block diagram of the control system.  

 

5. Simulation Results 

 
In order to validate this controller and hence, to establish the 

effectiveness of the proposed controller, the performance of 

the IPMSM drive based on the proposed control scheme is 

investigated at different operating conditions. Sample results 

are presented below. Digital simulations have been carried 

out using MATLAB/SIMULINK. The parameters of the 

laboratory IPMSM drive are given in Table I. In figure 3 

there is investigated the tracking of system, In this case the 

drive system is started at a constant load of 1N m with the 

speed reference set at 1800 r/min (188.5 rad/sec).  It can be 

seen from Figure 3 that the actual speed converges to the 

reference value within 0.1 s. However, according to this 

figure the stator current shows an overshoot but it lasts for 

only 0.08 s. Another simulated speed response for a sudden 

increase in command speed is shown in Figure 4 .It is evident 

from this figure that proposed method is also capable of 

handling the disturbance in speed command.  For 

investigating the performance of system in spite of 

disturbance, load is changed 3N.m at 0.5 sec, The simulation 

result of this condition are shown in figure 5, The actual 

speed does not change during the disturbance while the stator 

current swiftly reaches to its new value corresponding to the 

load applied. This shows the capability of new controller in 

terms of disturbance rejection. Computer simulations have 

been carried out to determine system responses for an 

industry standard proportional-integral-derivative 

(PID)-controlled. Obtained results showed that although 

steady-state error of the speed is quite low, the overall 

performance is inferior to that of the proposed controller.  
 

 

 

 

 
Fig. 3. Speed control of PMSM using Proposed Controller 

 

 

 

 

 Conclusion  
In this paper a novel approach for control of IPMSM was 

discussed. The method was based on RBF neural network 

that to guarantee the robustness of the closed-loop system, a 

modified SMC methodology was designed to derive an 

adaptation law for the adjust parameters of neural controller. 

By adding the thn  order error derivative term to the sliding 

surface, we were able to incorporate the approximation 

information of the plant (i.e., the plant neural model) in the 

adaptation mechanism. Using a Lyapunov-Based adaptation 

law, the tracking error vector was driven to the sliding 

manifold with smooth control effort. The developed control 

structure solves the chattering problem without degrading the 

tracking performance. Online learning, fast convergence, and 

learning stability were the most important advantages of this 

controller that were shown in the simulation results. Other 

important advantage of this method is its robustness and 

relative independency to plant model that makes it more 

interesting for real application. 
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Figure 4.Simulated response for sudden increase in speed for the  

proposed control system 
Figure 5.Simulation response for sudden increase in load for the  

proposed control system 
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