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Abstract: This contribution is about a design of universal chaotic oscillator based on the integrator synthesis, which 
represents a class of dynamical systems with piecewise linear vector fields. Final circuit consists of commercially 
available devices and provide us with good agreement between theoretical expectations and practical measurements.  
This is documented by a gallery of the oscilloscope screenshots. Moreover, one possible configuration of proposed 
circuit also exhibits the lowest sensitivity of the state space attractors with respect to the changes or uncertaines of  
the system parameters, which is prooved by a Monte-Carlo analysis together with the presence of positive one-
dimensional Lyapunov exponent.  
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1   Introduction 
It is well known that the most real physical system can 
be described by a set of nonlinear differential equations. 
To get a complete overview on its behavior, we further 
need a list of system parameters and initial conditions.  
In the case of deterministic systems, we should be able 
to make a long-time prediction of the system evolution. 
But, there is a small number of dynamical systems which 
can exhibit irregular behavior, chaos. Its typical property 
is an extreme sensitivity to a deviations of the initial 
conditions or changes in the system parameters and 
dense attractors with fractional topological dimension. 
The phenomenon of chaos is universal, it is reported 
from many completely different scientific fields such as 
chemistry, economics, mechanics, electronics, etc.  
     Recently, one can notice an increasing interest in 
practical implementation of the chaotic oscillators. There 
are many applications which are based on the generators 
of the chaotic waveforms, like a modulation techniques, 
masking procedures or coders. Here, we take advantage 
of the wide range of continuous frequency spectrum. 
From this point of view, the searching for the most 
robust circuit with well reproducible dynamic motion 
seems to be essential task. 
     In this paper, starting with the basic definitions for 
the systems of class C, we use the concept of qualitative 
equivalence [1], [2], [3], for the purpose of eigenvalue 
sensitivity optimization. In the next section, we verify 
derived results by means of numerical analysis, i.e. by 
the state space projections of the selected attractors, 
Monte-Carlo analysis of the eigenvalue sensitivities and 
by the corresponding estimation of the largest Lyapunov 
exponent (LE). In the end, the circuitry of the universal 

chaotic oscillator will be introduced, as well as several 
plane projections of chaotic attractors of some interest. 
 
 
2   Mathematical Models 
The dynamical system of class C is a terminology 
introduced by a mathematicians and covers the extensive 
group of autonomous deterministic dynamical systems 
with symmetrical vector fields, which can be expressed 
in compact matrix form as 

( )xwbxAx Th+=& ,                    (1) 
where x∈R3 are state variables, A is 3×3 matrix and b, w 
are column vectors. The scalar saturation-type function  

( ) ( )115.0 −−+= xwxwxw TTTh ,          (2) 

brings a nonlinearity, which separates entire state space 
by two parallel surfaces into into three regions. Let 
denote the inner region as D0 and two outer regions as 
D±1. For the brief analysis, we should note that the time-
evolution equations are linear in each region, in detail 

( )xwbAx TD +=&:0 ,     bxAx ±=± &:1D .     (3) 
Qualitative aspects of the dynamical motion are 
determined by fixed points, i.e. real solutions of system 

0x =& , and corresponding eigenvalues, which are roots 
of the characteristic polynomial. One equilibria is 
allways origin. Two others exist only if det(A)≠0, then 
there is a solution of non-homogenous problem 
xouter=±A-1b. For D0 we have 
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where E is an unity matrix. Similarly for D±1 we get 
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In the theory of chaos, the essential task is to determine 
the proper ranges of system parameters. For the double-
scroll attractor we adopt the following set of parameters 

892.0319.02,1 jinner ±−=λ ,     728.03 =innerλ ,     (5a) 
for the inner region and 

jouter ±= 061.02,1λ ,     29.13 −=outerλ ,     (5b) 
for both outer regions. These values directly correspond 
to the equivalent eigenvalues, i.e. coefficients of (4),  

09.01 =p ,     433.02 =p ,     653.03 =p ,     (6a) 
and 

168.11 −=q ,     846.02 =q ,     295.13 −=q ,     (6b) 
which are real numbers.  
     For the purpose of generating qualitatively equivalent 
dynamical systems, we can use the concept of linear 
topological conjugacy. Assuming the nonsingular trans-
formation of coordinates x=Ty, where T∈R3×3, equations 

( )[ ]yTwbATy T+= −1& ,  ( ) bTyTATy 11 −− +=& ,  (7) 
describe the equivalent linear systems in each region of 
the state space. Thus, the whole piecewise-linear (PWL) 
system exhibits similar behavior to the original, since the 
eigenvalues remain unchanged. Transformation provide 
us with a certain degree of freedom, which can be used 
for constructing canonical systems with respect to the 
actual circuit structure or we can improve some 
properties of the system. Here, we choose the second 
possibility. The optimization criterion can be chosen in 
the standard form 

( ) min,2 →∑
ijk

ijkr aS λ ,                    (8a) 

where the relative sensitivities are given as 
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The analytical form of optimization criterion was found 
by standard mathematical method 
( )( ) ( )212212122111122122112211 2 attattttttaa −=+− . (9) 

The symbolical form of this condition can be applied to 
different models of dynamical systems. Taking into 
account that there are different state matrices for distinct 
state space regions, we must make the optimization in 
each of these regions. Starting with a second-order state 
matrix A in Jordan form, optimized state matrices are 
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where K, K~  are some coefficients and 
( )2,1Re outerλυ =′ ,     ( )2,1Im outerλυ =′′ ,          (11) 

belongs to the outer segments of the vector field and 

( )2,1Re innerλμ =′ ,     ( )2,1Im innerλμ =′′ ,          (12) 
determines the behavior in the inner region. Unknown 
coefficients K, K~  must satisfy 
 

( )[ ] 0~~ 22222 =′−′+′′+′′−′′′′+′′′′ υμμυμυμυ KKKK , 
which greatly simplifies if we choose K=1 into quadratic 
equation 
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To finish it, for lifting these subsystems into third 
dimension, we use the concept of block-triangular 
decomposition 
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where matrices Aouter and Ainner are given by (10) while 
A1 and A2 are vectors to be computed. Following the 
steps published in [4], [5], we can write down the final 
complex decomposed system (CDSM) 
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Note that there is a connection between aij of any 2×2 
matrix A and the complex conjugated eigenvalues   

( ) υ′= 2tr A ,     ( ) 22det υυ ′′+′=A ,          (18) 
which can be fulfilled also by the subsystem 

υ′= 211a ,  112 −=a ,  22
21 υυ ′′+′=a ,  022 =a ,     (19) 

leading to the so-called dynamical system in elementary 
canonical form with state equations (ECSM) 
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where 
( )υμ ′−′= 21b ,     2222

2 υυμμ ′′−′−′+′=b , 
33

3 outerinnerb λλ −= ,     ( )101=Tw .          (21) 
Both systems (16) and (20) were succesfully modelled 
by synthesized universal oscillator.  
     A numerical integration of the Chua´s equations [6], 
its 1st canonical equivalent as well as (16) and (20) with 
the parameter family for the double-scroll attractor is 
shown in Fig.1. In the case of chaos, the global behavior 
is strongly affected by the changes of the internal system 
parameters, although the local geometry configuration of 
the vector field remains unchanged. So we are interested 
in the rate of eigenvalue migration. 
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Fig.1: 3D projections of the double-scroll attractor. 
 

 
 

Fig.2: Eigenvalue patterns for Monte-Carlo analysis. 
 
Fig. 2 is an illustrative example of Monte-Carlo analysis 
of this eigenvalues migration for 5000 generations and 
1% standard deviation. The optimized subsystem (10a) 
is compared with the state matrix with entries a11=q1, 
a12=-1, a21=q2, a22=0, which can be somehow related to

the 1st canonical model. Note that left picture (10a) is 
better in the sense a region of values is smaller. These 
results seems to be attractive, but we must ask following 
question: is the sensitivity criterion (8) suitable for 
chaotic system? The answer is unclear since there is no 
direct relation between the eigenvalues and the existence 
of chaos. Moreover, we can also ask much more general 
question: is there any optimization possible for chaotic 
system? The word optimization can be considered as the 
searching for the system with better properties or as the 
searching for the most wide hyperspace of system 
parameters for chaotic solution (with respect to the 
gradient). For identifying chaos, we are to calculate the 
rate of convergency of two neighborhood trajectories, 
i.e. we must establish the spectrum of one-dimensional 
LE. For chaos, due to the exponential divergency, one 
LE is required to be positive. Taking into account that 
these system are dissipative, the sum (average values) of 
all LE must be negative as the volume element is 
shrinking with time progression. To make a judgement 
which member of class C is less sensitive to the changes 
of the parameters values and thus best suited for 
practical implementation, we merge a program for 
Monte-Carlo analysis together with program for 
calculating spectrum of LE. Collection of resulting 
graphs are in Fig.3, Fig.4, Fig.5 and Fig.6. Here, we 
made an analysis only for 200 random generations with 
normal distribution and for different standard deviations, 
because it has a great demands on the performance of the 
personal computer.  

 

 
 

Fig.3: Monte-Carlo sensitivity analysis based on the largest LE for Chua´s equations. 
 

 
 

Fig.4: Monte-Carlo sensitivity analysis based on the largest LE for 1st canonical model. 
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Fig.5: Monte-Carlo sensitivity analysis based on the largest LE for CDSM (optimized system). 
 

 
 

Fig.6: Monte-Carlo sensitivity analysis based on the largest LE for ECSM. 
 
Black points are chaotic solutions, red color marks limit 
cycles, green color represents a fixed points and yellow 
denotes the suddenly unbounded solution. In each case, 
the initial conditions were chosen carefully to be a part 
of the basin of attraction. We utilize the final 
computation time as tend=500 to ensure we are on the 
attractor, with a standard Gram-Smith orthogonalization 
procedure after κ=1 step. In both Monte-Carlo analysis, 
we suppose system parameters statistically independent. 
 
 
3   Circuitry Implementation 
The most straightforward design of chaotic oscillator is 
based on the integrator block schematic, entire circuitry 
is designed by using three fundamental building blocks: 
inverting integrator, differential amplifier and diode 
limiter. Final voltage-mode circuit is presented in Fig. 7 
and consists of seven operational amplifiers TL084, two 
diodes 1N4148, several linear capacitors and resistors.  
It can model any dynamical system which can be 
recasted into the normalized expression 

( )[ ]+−+++=− zzyxhydxd εεετ 1211/  
( )[ ]zyxhzx ++−++ εε13 ,               (22) 

( )[ ]zzyxhyxdyd −++++=− εεεετ 232221/ , 
( )[ ] ( )zyxhzzyxhdzd +++−++=− εεεετ 3231/ . 

We choose the following listing of circuit elements: 
C=33nF, R=47kΩ, Rt=1.5kΩ, Rs=10kΩ, Rx=15kΩ.  

To model the behavior of (16), we are to set ε11=υ´´, 
ε12=-μ´, ε13=-υ´, ε21=-υ´´, ε22=-υ´, ε23=-b2, ε31=λ3

outer, 
ε32=-λ3

inner and ε=w2. Similarly, we can reconfigure the 
circuit for modelling (20) simply by setting ε11=1, 
ε12=2μ´-4υ´´, ε13=-2υ´, ε21=-υ´2-υ´´2, ε22=0, ε23=-b2, 
ε31=λ3

outer, ε32=-λ3
inner and ε=0. 

  

A nodes marked ∼ serve as an input for the reference 
sine voltage for precise adjusting of individual system 
parameters. Note that we can set them continuously and 
independently on each other, what is of big advantage. 
We can change the signum of the parameter simply by 
overstrain the associated switch. The breakpoint are 
defined by an external dc sources and can handle 
arbitrary values. Fig. 8 shows a gallery of screenshot 
photos measured on digital oscilloscope HP54603B, 
which were carefully selected to demonstrate a chaotic 
nature of oscillations. These laboratory experiments 
uncovers that this circuit exhibits a very good agreement 
between numerical integration and real behavior. It is 
worth nothing that also PSpice simulations give us the 
same results. This is the reason why is this 
implementation well suited for educational purposes. 
The transfer characteristics of the double-sided diode 
limiter is demonstrated in Fig.9. For easier imagination 
about the time-dependance of a chaotic signal we also 
include Fig.10, which display both x and z state variable.  
Finally, the physical implementation (SMD) of presented 
oscillator is shown in Fig.11. 
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Fig.7: Circuitry implementation of the universal, fully analog chaotic oscillator. 
 

    
 

    
 

Fig.8: Laboratory experiments, selected chaotic steady states. 
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Fig.9: PWL transfer function. 
 

 
 

Fig.10: Chaotic waveforms in time domain. 
 

 
 

Fig.11: Universal chaos generator. 
 
 
4   Conclusion 
This paper shows a new method how to classify chaotic 
systems with respect to their sensitivities. We found the 
member of class C systems with the best performance, 
i.e. its chaotic double-scroll attractor is less sensitive to  
a changes of system parameters than any other existing 
model. If we can generalize this statement to any global 
attractor (chaotic or even non-chaotic) is the topic of our 
further study. 
     We describe the type of attractor by means of one-
dimensional LE. The positive LE is a result not a reason 
why a dynamical system is chaotic. In spite of this, it 
suggests that a given system exhibits a sensitive 
dependance on initial conditions and bounded solution. 
     CDSM and ECSM are not the only dynamical system 
covered by our universal oscillator. It can also model 
some members of class F, which have three real distinct 
eigenvalues in the inner region of the state space and 
thus behaves like an overdamped circuit [7]. The general 
condition (9) was applied also on this system and the 
optimized system was found [8]. Oscillators based on the 
integrators can be easily upgraded to fourth dimension 
for the chance of hyperchaos [9], but at the cost of large 
amount of circuit elements. 
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