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1 Introduction 
In [7], Ibragimov-Gadjiev gave a general sequence 
of linear positive operators defined by 
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    It is known that Ibragimov-Gadjiev operators 
include some well-known classical linear positive 
operators such as Bernstein, Bernstein-
Chlodowsky, Szász-Mirakyan and V. A Baskakov 
operators. 
 

 1.  Choosing  ( ), , 1 ,
1

n

n n
uxK x t u n

t
α⎡ ⎤= − =⎢ ⎥+⎣ ⎦

 

and ( ) 10n n
ψ = ,  we have Bernstein operators. 

 2. Choosing  ( ), , 1 ,
1

n

n n
uxK x t u n

t
α⎡ ⎤= − =⎢ ⎥+⎣ ⎦

and 

( ) 10 lim ,lim 0n
n nn n

n

bb
nb n

ψ
→∞ →∞

⎛ ⎞= = ∞ =⎜ ⎟
⎝ ⎠

, 

 
 we have Bernstein-Chlodowsky operators. 
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n nK x t u e nα− += = and 
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ψ = , we have Szász-Mirakyan operators. 

 4. Choosing  ( ) ( ), , ,n n nK x t u K t ux nα= + = and 

( ) 10n n
ψ = , we have Baskakov operators. 

    Some new properties of the operators (I) and 
some generalizations investigated in [3, 5, 10]. 
    The aim of this paper is to give an integral 
generalization of nM  in Kantorovich sense. For a 
Bernstein type approximation process for integrable 
functions, as Kantorovich done, we show that the 
derivatives of the Ibragimov-Gadjiev operators 
converge to the derivative of the function. Then we 
define Kantorovich type generalization of nM as 
taking instead of nM of f derivative of 
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Supposed that the function ( ), ,nK x t u , in addition 
to the condition a)-c), satisfies: 
(d) ( ), ,nK x t u  is continuously differentiable with 
respect to x  for any fixed u  and t  on the interval 
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Thus, we consider the operator    
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  2. Auxilary Results 

    
  
In this section we shall give some properties of 
operators which we shall apply the proofs of the 
main theorems. 
Lemma 2.1 The condition (d) is equivalent to the 
following equality 
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Proof. By ν -multiple application of condition (c), 
we obtain  
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Applying condition d) and (3) we get 
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Using again (3), we have desired result. 
 
Lemma2.2 For the polynomial 
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It is easily seen that by this 
equality
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Note that by the equalities above, it can be said that 

0,nT  and 1,nT  are polynomials in n of order 0  and 

1
2

, respectively. Moreover, 2,nT  and 3,nT   are 

polynomials of degree 1  and 
3
2

. Finally, 4,nT  is 

polynomial of degree 
4
2

. This completes the 

proof of lemma. 
Lemma2.3 For nx I∈  
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3.The convergence results 
    Now we introduce the convergence issues of the 
derivative of ( )nL f . 

Theorem 3.1.  Let f  is bounded function on nI . 

If f   has finite derivative ( )'f x  at the point 

nx I∈ , then 

                     ( ) ( ) ( )' 'lim .nn
L f x f x

→∞
=  

Proof: Let 0x ≠ . Using ( )2  we get  

( ) ( ) ( ) ( )

( ) ( )

'

10
0

0

1 1
0 0

1
, ,

!

, , , ,

n n
u
t

n n m
u u
t t

L f x f K x t u
n x u

f
n

K x t u n K x t u
x u u

ν ν

ν
ν

ν

ν ν

ν ν

ν
ν

ν

ν

∞

==
=

∞

=

+
= =
= =

− ∂ ∂⎛ ⎞= ⎜ ⎟ ∂ ∂⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎧ ⎫∂ ∂⎪ ⎪× −⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

∑

∑

 
By condition  ( )e  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

'

0

0

1
,0,1

! 1

1 , .
1

n n

n

nx
L f x f K x

n x mx u

f nx A x
x mx n

ν ν

ν
ν

ν

νν
ν

ν ν ν

∞

=

∞

=

− − ∂⎛ ⎞= ⎜ ⎟ + ∂⎝ ⎠

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠

∑

∑
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp205-210)



Since 'f  exists then by Lagrange's theorem we can 
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Using ( )3  and condition ( )c the above equality 
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This completes the proof of Theorem 3.1. 
For the function 
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which is a linear positive operator such that it is a 
Ibragimov-Gadjiev operator in Kantorovich form. 
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Since the set of all step functions is dense in the 
space [ )0,L ∞  to prove the theorem it is sufficient 
to prove only for the characteristic function uχ . 
It is obvious that 
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;
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R nr
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rA x dx dx
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ν ν

χ

+
+−

=
+

= =
+∑∫ ∫    .         ( )9  

 
For a large n , we can write 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

0

0

0 0

0

0 0

;
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1; ; ;

;

2 ; 1; ; ,

n n n n

n

n n

n

n

n n

n

n

n

n n
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u n u u n uL

u R

n u n u
u

u R

n n u n u

u

n u

u R

n u n n u

A x A x dx

A x dx A x dx

A x A x dx A x dx

A x dx

A x A x dx A x dx

χ χ χ χ

χ χ

χ χ

χ

χ χ

⎡ ⎤− = −⎣ ⎦

⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

−

⎡ ⎤= − +⎣ ⎦

∫

∫ ∫

∫ ∫

∫

∫ ∫
 
where  ( )1 .

n nu u xχ χ= −  
Also,  

( ) ( )

( )
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1
0

1

0 0
1
0
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0

; ;
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, ,
1 1

n n

n

x

n u n u

n

u n

u
t

n
u
t

dA x L t dt x
dx

d dt K x t u
dx u

d r K x t u
dx n n u

ν
ν

ν
ν

ν

ν
ν

χ χ

χ

ν

+

+∞

=
=
=

∞

==
=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

⎧ ⎫⎜ ⎟∂⎪ ⎪⎜ ⎟= ⎨ ⎬⎜ ⎟∂⎪ ⎪⎜ ⎟⎩ ⎭
⎝ ⎠
⎛ ⎞∂⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟+ + ∂⎝ ⎠
⎝ ⎠

∫

∑ ∫

∑

Thus 

( ) ( )

( )

100 0

; , ,
1 1

, ,

n

n

u

n u n
u
t

n n

rA x dx K x t u
n n u

L u

ν

ν
ν

νχ

ϕ

∞

==
=

∂⎛ ⎞= −⎜ ⎟+ + ∂⎝ ⎠

=
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where 

                    ( )
0,

,
n

n n

x u
x

x u x u
ϕ

≤⎧
= ⎨ − >⎩

. 

Since ( ) ( ) ( ), 0n nL u x nϕ ϕ− → →∞    then  

                  ( )
0

lim ; 0.
n

n

u

n un
A x dxχ

→∞
=∫  

From ( ) ( )9 , 10  and ( )11 ,  the proof is completed. 
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