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Abstract: - A technique for adaptive conjugate smoothing of discontinuous fields is presented in the paper. The 
described technique is applicable in various engineering problems and is especially effective when hybrid 
numerical – experimental methodologies are used. Adaptive image smoothing and stretching strategy is 
illustrated for a discontinuous plain stress field problem when photoelastic fringes representing the variation of 
stress are constructed in virtual projection plane. 
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1 Introduction 
Visualisation techniques of the results from finite 
element analysis procedures are important due to 
several reasons. First is the meaningful and accurate 
representation of processes taking place in the 
analysed structures. Second, and perhaps even more 
important, is building the ground for hybrid 
numerical - experimental techniques. A typical 
example of finite element analysis in developing a 
hybrid technique is presented in [1]. 

Unfortunately, conventional FEM analysis 
techniques are based on the approximation of nodal 
displacements (not stresses) via the shape functions. 
Ramesh et al [2] have correctly noted that 
photoelastic isochromatics can be effectively used 
for the detection of FEM meshing problems. 

Conventional FEM would require unacceptably 
dense meshing for producing sufficiently smooth 

photoelastic patterns. Multiscale meshing is not 
affordable either - the whole domain of the structure 
must be analysed with the same accuracy. Therefore 
there exists a need for the development of a 
technique for smoothing the generated photoelastic 
fringe patterns representing the stress distribution 
and calculated from the displacement distribution. 
The proposed smoothing technique is based on 
conjugate approximation used for the calculation of 
nodal values of stresses and provides the digital 
images of acceptable quality on relatively rather 
coarse meshes. 

The purpose of the paper is the development of 
techniques for smoothing of discontinuous fields 
applicable in finite element analysis enabling 
effective interpretation of experimental results what 
provides insight into the physical processes taking 
place in the analysed objects. 
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2 Smoothing of Discontinuous Fields 
The components of stresses in the domain of the 
analysed finite element can be calculated in the 
usual way [3]:  
 

[ ][ ]{ }0δ
τ
σ
σ

BD

xy

y

x

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

,     (1) 

 
where {δ0} is the vector of nodal displacements 

of the eigenmode; [B] is the matrix relating the 
strains with the displacements; [D] is the matrix 
relating the stresses with the strains; σx, σy, τxy are 
the components of the stresses in the problem of 
plane stress. It can be noted that the displacements 
are continuous at interelement boundaries, but the 
calculated stresses are discontinuous due to the 
operation of differentiation. 

The most natural way for the calculation of the 
nodal values of stresses is the minimisation of the 
squared difference between the discontinuous strain 
field defined by eq.(1) and the interpolated stress 
field through the nodal values of the stress 
components. That difference is integrated in the 
domains of the appropriate elements: 
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where σ denotes corresponding component of 

stress; {δ} is the vector of nodal values of σ;  [N] is 
the row of the shape functions of the finite element; 
ei stands for the domain of the i-th finite element; 
summation denotes the direct stiffness procedure in 
the global domain [3]. 

Unfortunately, the solution of unknown nodal 
values {δ} from eq.(2) is unsatisfactory for 
generation of digital photoelastic images as the 
derivatives of the interpolated stress fileds are still 
discontinuous. That is illustrated in the numerical 
results. Therefore, additional penalty terms for fast 
variation of the stress fields are introduced: 
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where λ is a parameter of smoothing. Addition of 

the penalty term defined in eq.(3) to the residual in 
eq.(2) after elementary transformations leads to: 
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where [C] is the matrix of the derivatives of the 

shape functions. The minimisation of residuals 
defined by eq.(4) leads to the following systems of 
linear algebraic equations for the determination of 
each of the component of the stresses: 
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The selection of the smoothing parameter λ can 

be performed using the error norms of the finite 
elements [3] and the components of the stresses are 
interpolated from their nodal values by using the 
shape functions of the finite elements. 
 
3 One-Dimensional Example 
The formulation of the smoothing procedure is 
illustrated by one-dimensional model comprising 
three finite elements each consisting from 3 nodes 
(Fig. 1). The co-ordinates of the nodes are 

1−= kxk ; 7 ..., ,2 ,1=k .  
 

 
Fig. 1. One-dimensional example.  

 
Then, the shape functions of the i-th finite 

element are: 
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The distribution of strain and stress fields in the 

domain of the i-th element is interpolated as: 
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where ( )i

jB  is the derivative of shape function 
( )i
jN , 3 ..., ,1=j . Then, elementary transformations 

lead to: 
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Summation over the global domain and solution 

of algebraic system of equations in eq. (5) produces 
a set of discrete nodal components of stress {δ} 
which can be interpolated in the domains of 
appropriate finite elements: 
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Particularly, for ε1=0.4; ε2=0.35; ε3=0.2; ε4=0.4; 

ε5=0.53; ε6=0.55 and ε7=0.8 the theoretical 
discontinuous, interpolated continuous and 
smoothed continuous fields of stresses are presented 
in Fig. 2. Array of thin solid lines correspond to 
increasing values of the smoothing parameter λ.  

It can be noted, that the smoothed fields of 
stresses is much more compressed comparing with 
the theoretical discontinuous field of stresses. 
Therefore the number of reconstructed interference  
fringes would be too small and would not represent 
the physical effects taking place in the analysed 
system. This problem can be avoided by stretching 
the smoothed field of stresses to the limits of the 
non-smoothed field.  

 

 
Fig. 2. Smoothed fields of stresses. 

 
Explicitly,  
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where Ia is the smoothed field; I* is the stretched 

field;   
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Fig. 3. Smoothed and stretched fields of stresses. 

 
Fig. 3 presents the effect of stretching when the 

field of stress is not only smoothed but also 
stretched up to range of numerical values which 
guarantees correct representation of stress 
distribution in the global domain.  
  
 
3 Finite Element Model 
The problem of smoothing of discontinuous fields is 
illustrated by finite element analysis of bending 
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vibrations of micromechanical components 
comprising photoelastic coatings. Bending 
vibrations are common in different engineering and 
physical applications. Bending vibrations of 
centrally clamped rotating circular disks play crucial 
role in the functionality of hard disk drives. Lots of 
efforts are spent for dynamic stabilisation, control 
and measurement of bending vibrations in such 
micro-mechanical systems [4]. 

Measurement of microscopic deflections from 
the state of equilibrium is a challenging 
experimental problem. Different optical 
measurement techniques are developed for 
experimental investigation of bending vibrations [5]. 
Unfortunately, interpretation of experimental 
measurement results is a nontrivial inverse 
engineering problem often having non-unique 
solutions. Therefore there exists a definite need for 
hybrid numerical – experimental techniques that 
could help to interpret the measurement results 
(Fig. 3).  

 
Fig. 3. Schematic diagram of hybrid numerical-

experimental techniques.  
 
Such techniques usually comprise a numerical 

model of the system coupled with optical and 
geometrical parameters of the measurement set-up. 
Then the predicted response of the experimental 
optical measurement system can be mimicked in 
virtual numerical environment when the dynamical 
parameters of the analysed object are pre-defined.  

Finite element mesh of a vibrating 
micromechanical centrally clamped disk is shown in 
Fig. 4. The mesh in the status of equilibrium is grey 
and deflected according to the eigenmode is black. 
Finite element techniques are used to construct the 
numerical model of a centrally clamped circular 
disk.  

 
 

 
 

Fig. 4. Finite element mesh of disk with clamped 
internal radius.  

 
Plate bending element with the independent 

interpolation of the displacement w and the rotations 
about the appropriate axes θx and θy is used [3]. The 
schematic representation of the plate and the coating 
is shown in Fig. 1. x, y and z are the axes of the 
orthogonal Cartesian system of coordinates; w is the 
displacement of the plate; θx and θy are the rotations 

of the plate about the appropriate axes; y
hu θ
2

=  

and x
hv θ
2

−=  are the displacements on the surface 

of the plate; h is the thickness of the plate; d is the 
thickness of the photo-elastic coating. 

 

 
Fig. 4. Schematic model of the finite element. 

 
The nodal variables of the plate bending element 

are the deflection of the plate w, the rotation of the 
plate about the x axis θx  and the rotation of the plate 
about the y axis θy.  

The principal stresses σ1, σ2 at each node are 
calculated as the eigenvalues of the matrix: 
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and the normalised eigenvectors of this matrix 

{V1}, {V2} are the directions of the principal 
stresses. The vector of polarisation is given as: 
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where α is the angle of the vector of polarisation. 
Then the intensity in the photoelastic image of the 
plane polariscope (isoclinics and isochromatics 
intertwined) is calculated as 
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where C is the constant dependent on the 

thickness of the analysed structure in the state of 
plane stress and on the material from which it is 
produced. The intensity of the photoelastic image 
for the circular polariscope (isochromatics) is 
calculated as: 
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The relationships presented above form the basis 

for the generation of digital photoelastic images. 
The procedure of construction of digital images in 
projection planes from isoparametric finite elements 
is described in detail in [6]. 

 

 
Fig. 5. Photoelastic images of a clamped disk: A – 

unsmoothed image; B – smoothed image; C – 
smoothed and stretched image 

 
Photoelastic fringes (circular isochromatics) of 

the vibrating disk are presented in Fig. 5. Three 
images are overlapped due to the space limitations. 
It can be clearly seen that the fringes are broken in 
the unsmoothed image A, what is unacceptable for 
stress field analysis. The smoothing procedure 
produces better pattern of fringes (Fig. 5.B). 
Nevertheless, it can be notes that the number of 
fringes in the smoothed image is less that in the 
original unsmoothed one. Stretching of the field of 

stresses up to the original range of values (Fig. 5.C) 
provides correct number of fringes with acceptable 
smoothness.  

 

 
Fig. 6. Isoclinics and isochromatics intertwined. 

 
Finally, isoclinics and isochromatics intertwined 

are presented in Fig. 6 (polarization angle α = π/8). 
Such numerical reconstruction provides high quality 
digital images well acceptable for hybrid numerical 
– experimental techniques.  
 
 
4 Concluding Remarks 
The displacement based FEM formulations are 
coupled with stress based photoelasticity analysis. 
As the stress field is discontinuous in the inter-
element boundaries, the introduced smoothing and 
stretching procedure enables the generation of high 
quality digital images acceptable for hybrid 
numerical – experimental techniques. 

It can be noted that the generation of the digital 
photoelastic images is not a straightforward 
procedure. It involved such steps as the construction 
of the numerical model of the analysed object; finite 
element calculations based on the loading scheme, 
boundary conditions; determination of the nodal 
vales of stress components and their smoothing; 
generation of appropriate digital images. 
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